

# Introduction to the OC5 Project,

an IEA Task Focused on Validating Offshore Wind Modeling Tools



Amy Robertson Trondheim, Norway February 5, 2015

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

## **Offshore Wind Modeling Tools**

- OWTs are designed using aero-hydro-servo-elastic tools
- The tools must be verified and validated to assess their accuracy



#### The OC3 & OC4 Projects

- Two research tasks were initiated under IEA Wind to address this issue:
  - OC3 (IEA Task 23, Subtask 3): 2005 2009
  - OC4 (IEA Task 30): 2010 2013
- Focus was on OWT tool verification & benchmarking, with emphasis on the support structure

OC3 = Offshore Code Comparison Collaboration OC4 = Offshore Code Comparison Collaboration, Continued

## **OC3/OC4 Verification Process**



### The OC3/OC4 Systems Examined



## **OC4 Phase II Participants & Tools**

| Company                | Simulation Tool                        |                                                                                                                                                                                                                                     |
|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4Subsea                | OrcaFlex                               |                                                                                                                                                                                                                                     |
| ABS                    | CHARM3D + FAST                         |                                                                                                                                                                                                                                     |
| CENER                  | OPASS + FAST                           |                                                                                                                                                                                                                                     |
| CENTEC                 | FAST                                   | raunnoter 👝 NTTNIT                                                                                                                                                                                                                  |
| CeSOS (NTNU)           | Simo+Riflex+Aerodyn                    |                                                                                                                                                                                                                                     |
| CGC                    | Bladed 4.3                             | CENTEC                                                                                                                                                                                                                              |
| DHI                    | WAMSIM                                 | <b>Scener</b>                                                                                                                                                                                                                       |
| DTU                    | HAWC2                                  |                                                                                                                                                                                                                                     |
| GH                     | Bladed 4.4 /Bladed Advanced Hydro Beta |                                                                                                                                                                                                                                     |
| Goldwind               | FAST                                   | 4 SUOSEU                                                                                                                                                                                                                            |
| IFE                    | 3DFLOAT                                |                                                                                                                                                                                                                                     |
| IST                    | FAST                                   |                                                                                                                                                                                                                                     |
| LMS-IREC               | SWT                                    |                                                                                                                                                                                                                                     |
| MARINTEK               | RIFLEX-Coupled                         | ्राम्य स्थित के प्रति के प्रति<br>कि प्रति के प |
| NTUA                   | hydro-GAST                             |                                                                                                                                                                                                                                     |
| NREL                   | FAST                                   |                                                                                                                                                                                                                                     |
| POSTECH                | GH Bladed                              | A Siemens Business GARRAD                                                                                                                                                                                                           |
| PRINCIPIA              | DeepLinesWT                            | HASSAN                                                                                                                                                                                                                              |
| SWE                    | SIMPACK +HydroDyn                      | TÉCNICO LISBOA                                                                                                                                                                                                                      |
| Univ. of Tokyo         | CAST                                   |                                                                                                                                                                                                                                     |
| Univ. of Ulsan         | UOU + FAST                             |                                                                                                                                                                                                                                     |
| WaveEC                 | Wavec2Wire                             |                                                                                                                                                                                                                                     |
| <del>(</del> 金瓜<br>GOL | 风科技<br>DWIND AN ABS GROUP COMPANY      | ng UUU 울산네악의 WavEC                                                                                                                                                                                                                  |

NATIONAL RENEWABLE ENERGY LABORATORY

## OC3/OC4 Summary

#### • Verification:

- Code-to-code comparisons have agreed well
- Differences caused by variations in:
  - Model fidelity
  - Aero-, hydro-, & structural-dynamic theories
  - Model discretization
  - Numerical problems
  - User error

#### Modeling tool improvements:

- Many errors have been identified and resolved
- Analysis methods have been refined
- Future R&D needs identified
- Benchmark development:
  - Benchmark model/data available to public
  - Provided useful modeling experience to many engineers
- Expert Meeting on Code-to-Data Validation showed interest for the group to work on this topic



#### **Results – LC 2.1 – Regular Waves**



### **OC5 – Simulation Tool Validation**

- OC5 = Offshore Code Comparison Collaboration, Continued, with Correlation
  - Code-to-data validation of offshore wind modeling tools
  - Extension of IEA Wind Task 30: 2014-2018
  - Three phases examining three different systems



Monopile - Tank Testing



Semi - Tank Testing



Jacket/Tripod – Open Ocean

NATIONAL RENEWABLE ENERGY LABORATORY

| Phase                      | Description                                  | Timeline              |  |
|----------------------------|----------------------------------------------|-----------------------|--|
| Phase Ia MARINTEK Cylinder |                                              | June 2014 – Feb. 2015 |  |
| Phase 1b                   | DTU/DHI Cylinder Feb. 2015 – June            |                       |  |
| Phase II                   | DeepCwind<br>Semisubmersible June 2015 – Jun |                       |  |
| Phase III                  | Open Ocean System                            | June 2016 – June 2017 |  |

#### **Participating Countries**

| Country        | Status      |  |  |
|----------------|-------------|--|--|
| China          | Active      |  |  |
| Denmark        | Active      |  |  |
| France         | Considering |  |  |
| Germany        | Active      |  |  |
| Italy          | Active      |  |  |
| Japan          | Active      |  |  |
| Korea          | Active      |  |  |
| Netherlands    | Active      |  |  |
| Norway         | Active      |  |  |
| Portugal       | Active      |  |  |
| Spain          | Active      |  |  |
| United Kingdom | Considering |  |  |
| United States  | Active      |  |  |

## **OC5 Validation Project Process**

| <b>STEP 1: Create a</b> |
|-------------------------|
| model of the            |
| system                  |

STEP 2: Choose data sets for comparison

STEP 3: Calibrate the model

STEP 4: Validate the model

| 0 0      | btain s | vstem o | lesign  | inform | ation |
|----------|---------|---------|---------|--------|-------|
| <b>0</b> | Dtail 3 | ystem t | lesigni | morm   | ation |

- Develop a specification document of the design for participants (participants will help modify/improve this document)
- Participants will then develop a model of the structure based on the specification document within their modeling tool of choice
- Create a list of available datasets, including specifics on wind/waves
- Group will down-select data sets to be used for calibration and validation
- Select measurement channels to be used for comparisons
- Calibration will be done as a group.
- Run structural-only cases, and calibrate model properties (mass/stiffness) using natural frequencies, structural damping rations, mooring force-disp.
- Run steady wind-only cases, and calibrate airfoil coefficients using rotor performance (power, torque, thrust)
- Run wave-only cases, and calibrate hydrodynamic coefficients using freedecay tests, current-only tests, and wave-only tests
- Simulate model for a variety of cases with increasing complexity (if available): wind-only, wave-only, and then wind/wave
- Do not use datasets used for calibration
- Compare simulated response to that of the measurements
- Discuss differences between participant results and tests

#### **Phase I - Monopile**

#### Phase I examines monopile

- No wind turbine
- Fixed structure
- Tank tests
- Two data sources:
  - MARINTEK testingDTU/DHI testing



#### **MARINTEK Tests**

- Single steel cylinders with varying diameter
  - **Draft = 1.44 m**
  - Water depth = 10 m
- Cylinders attached to a steel framework
  - Attachment through two force transducers (T1 and T2)
  - Vertical and transverse motion restricted by stiffener rods
  - Eigenfrequencies > 10 Hz
  - Consider framework as rigid
  - Free surface on bottom, pierces water line



## **Datasets simulated in OC5 project**

| OC5 Test<br>No. | Original<br>Test No. | Condition | Diameter (m) | H/Hs (m) | T/Tp (s) | Gamma* |
|-----------------|----------------------|-----------|--------------|----------|----------|--------|
| 1               | 441                  | Regular   | 0.2          | 0.15     | 1.533    |        |
| 2               | 444                  | Regular   | 0.2          | 0.23     | 1.533    |        |
| 3               | 442                  | Regular   | 0.2          | 0.28     | 1.533    |        |
| 4               | 445                  | Regular   | 0.2          | 0.37     | 1.533    |        |
| 5               | 341                  | Regular   | 0.327        | 0.15     | 1.533    |        |
| 6               | 344                  | Regular   | 0.327        | 0.23     | 1.533    |        |
| 7               | 342                  | Regular   | 0.327        | 0.28     | 1.533    |        |
| 8               | 345                  | Regular   | 0.327        | 0.37     | 1.533    |        |
| 9               | 431                  | Regular   | 0.2          | 0.282    | 2.114    |        |
| 10              | 433                  | Regular   | 0.2          | 0.45     | 2.114    |        |
| 11              | 432                  | Regular   | 0.2          | 0.522    | 2.114    |        |
| 12              | 434                  | Regular   | 0.2          | 0.6      | 2.114    |        |
| 13              | 1331                 | Regular   | 0.327        | 0.282    | 2.114    |        |
| 14              | 333                  | Regular   | 0.327        | 0.450    | 2.114    |        |
| 15              | 332                  | Regular   | 0.327        | 0.522    | 2.114    |        |
| 16              | 334                  | Regular   | 0.327        | 0.6      | 2.114    |        |
| 17              | 401                  | Irregular | 0.2          | 0.279    | 2.4      | 1.7    |
| 18              | 4301                 | Irregular | 0.327        | 0.279    | 2.4      | 1.7    |
| 19              | 402                  | Irregular | 0.2          | 0.357    | 2.76     | 1.7    |
| 20              | 4302                 | Irregular | 0.327        | 0.357    | 2.76     | 1.7    |

\*Gamma = peak enhancement factor for a JONSWAP spectrum

## **Modeling Participants/Tools/Approach**

| Participant | Code              | Wave Model                                           | Hydro Model | Wave Surface<br>Treatment |
|-------------|-------------------|------------------------------------------------------|-------------|---------------------------|
| 4Subsea     | ORCAFLEX          | 3 <sup>RD</sup> ORDER DEAN                           | ME          | IW                        |
| ABS         | CHARM3D+<br>FAST  | LINEAR AIRY                                          | ME          | IWV                       |
| Alstom      | S4WT              | 5 <sup>TH</sup> ORDER STOKES/L.AIRY                  | ME          | IW/IWW                    |
| CGC         | BLADED 4.3        | LINEAR AIRY                                          | ME          | IWW                       |
| Dec         | MORISON'S EQ.     | LINEAR AIRY                                          | ME          | IWW                       |
| DNV GL      | BLADED 4.6        | 6 <sup>TH</sup> AND 8 <sup>TH</sup> ORDER SF/L. AIRY | ME          | IW/IWW                    |
| GOLDWIND    | FAST              | 2 <sup>ND</sup> ORDER STOKES                         | PF          | NO                        |
| IFE         | 3DFLOAT           | 6 <sup>TH</sup> ORDER SF/L. AIRY                     | ME          | IW/IWE                    |
| IFPEN/PRI   | DEEPLINESTMWIND   | 3 <sup>RD</sup> ORD. SF (ACTUAL)/L. AIRY             | ME          | IW                        |
| MARINTEK    | RIFLEX            | 2 <sup>ND</sup> ORDER STOKES (ACTUAL)                | ME          | IWE                       |
| NREL        | FAST              | 2 <sup>ND</sup> ORDER S+D/ACTUAL                     | ME          | NO                        |
| NTNU        | MORISON'S EQ.     | LINEAR AIRY                                          | ME          | NO                        |
| POLIMI      | ILMAS             | LINEAR AIRY                                          | ME          | NO                        |
| SWE         | SIMPACK +HYDRODYN | LINEAR AIRY                                          | ME          | NO                        |
| υτοκγο      | CAST              | LINEAR AIRY                                          | ME          | NO                        |
| υου         | UOU + FAST        | 2 <sup>ND</sup> ORDER STOKES                         | ME          | NO                        |
| WAVEC       | WAVEC2WIRE        | 2 <sup>ND</sup> ORDER STOKES                         | PF          | NO                        |
| WMC         | FOCUS6 (PHATAS)   | 3 <sup>RD</sup> ORDER SF/L. AIRY                     | ME          | IW/IWW                    |

### **Calibration Methods**

| Participant | Wave Ht Tuning                          | Cd/Ca Calibration      | Cd/Ca Extrapolation      |
|-------------|-----------------------------------------|------------------------|--------------------------|
| 4SUBSEA     | Manual tuning                           | 1.0/Manual             | 1.0/KC-based             |
| ABS         | Ave. peaks/troughs                      | 1.0/Least squares      | 1.0/Re and KC-based      |
| ALSTOM      | Ave. peaks/troughs                      | Weighted least squares | DNV                      |
| CGC         | Ave. peaks/troughs                      | Least squares          | Re and KC-based          |
| DEC         | Least squares                           | Least squares          | Re-based                 |
| DNV GL      | Ave. peaks/troughs                      | 0.0/Least squares      | 0.0/Re-based             |
| Goldwind    | Ave. peaks/troughs                      | N/A                    | N/A                      |
| IFE         | Ave. peaks/troughs                      | 1.0/Match amplitudes   | 1.0/Re, KC, and DP-based |
| IFPEN/PRI   | Ave. peaks/troughs                      | DNV                    | DNV                      |
| MARINTEK    | Exp., filtered to 1 <sup>st</sup> order | Least squares          | D and Tp-based, MF       |
| NREL        | Least squares                           | 1.0/Least squares      | 1.0/D and Tp-based       |
| NTNU        | Frequency peak                          | 1.0/Least squares      | 1.0/D and Tp-based       |
| PolyMilano  | Frequency peak                          | DNV/KC-based           | DNV/Manual               |
| SWE         | Frequency peak                          | Least squares          | DNV with correction      |
| υτοκγο      | Least squares                           | Least squares          | N/A                      |
| υου         | Frequency peak                          | 1.0/Morison method     | KC-based with correction |
| WAVEC       | Frequency peak                          | Morison method         | DNV/KC-based             |
| wмс         | Manual tuning                           | 1.0/KC-based           | 1.0/KC-based             |

## **Example of Results - 3<sup>rd</sup> Order Forces**



- Results more consistent when using group parameters
  - Those using 1<sup>st</sup> or 2<sup>nd</sup> order and no wave stretching show similar values, but lower than the rest
  - Those using higher-order waves and stretching not as similar

# • Under-prediction of experimental forces for case 8, but similar for 3, 9, and 14

NATIONAL RENEWABLE ENERGY LABORATORY

## **Findings from Phase Ia**

- As waves become more nonlinear, higher-order wave theories better approximate shape of wave elevation and forces
- Most codes capture 1st-order force response very well, but only higher-order theories (or those using wave stretching) capture 2nd and 3rd-order components
  - 3<sup>rd</sup> order component important for capturing ringing phenomenon resulting from nonlinear wave passage
- Second-order wave kinematics do not have a significant effect on wave force
- For larger k\*R values, non-slender diffraction effects reduce the 2<sup>nd</sup> order forces in the experiment – which are not captured by Morison's equation
- Influence of higher-order components not as evident in irregular wave results

## **Phase Ib - Wave Tank Testing by DHI/DTU**

- Wave tests of cylinders performed in shallow water basin at DHI
- Examined steep and breaking waves using a slope of 1:25 built in front of the wave maker
- OC5 will model flexible cylinder at 1/80<sup>th</sup> scale
  - Focus on steeper waves
  - Examine influence of wave loads on structural response



## Phase II

- Semisubmersible tested by DeepCwind in 2011 was retested at MARIN in 2013 with new, better performing turbine
- Turbine is MARIN stock turbine
  - NREL 5MW, performancescaled at 1:50
- Will examine a series of wind/wave tests performed



Courtesy: Andy Goupee, University of Maine

### **Upcoming Meetings**

- Feb 6 Trondheim, Norway (DeepWind conference)
  - Review Phase Ia results MARINTEK cylinder
  - Introduce work for Phase Ib DTU/DHI cylinder
- June 26 Kona, Hawaii (ISOPE conference)
  - Review Phase Ib results DTU/DHI cylinder
  - Introduce work for Phase II DeepCwind semisubmersible
  - Update status on Phase III Open ocean test
- Winter 2015 ?
- Summer 2016 ?

Introduce work for Phase III – Open ocean test



## **Thank You!**

Amy Robertson +1 (303) 384 – 7157 Amy.Robertson@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.