

Recent Developments of FAST for Modelling Offshore Wind Turbines

EERA DeepWind 2015

February 4-6, 2015

Jason Jonkman, Ph.D. Senior Engineer, NREL

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

The FAST Multi-Physics Engineering Tool

- FAST is DOE/NREL's premier open-source wind turbine multi-physics engineering tool
- FAST is undergoing a major restructuring, with a new modularization framework (v8) & greatly improved capability for offshore fixedbottom & floating systems
- This presentation summarizes recent efforts to develop, verify, & validate FAST for offshore wind

FAST Modularization Framework

Module-independent inputs, outputs, states, & parameters

Loose- (Top) & Tight- (Bottom) Coupling Schemes

States in continuous-time, discrete-time, & in constraint form

- Loose & tight* coupling
- Independent time & spatial discretizations
- Time marching, operating-point determination*, & linearization*
- Data encapsulation & dynamic allocation
- Save/retrieve capability*

*Not yet available EERA DeepWind 2015

3

Hydrodynamic Enhancements (HydroDyn)

- Multi-member strip theory
- Linear state-space-based radiation formulation alternative to convolution
- Wave directional spreading
- 2nd-order hydrodynamics

Strip-Theory Nodes for the OC4-DeepCwind Semisubmersible

Reformulation of Radiation Convolution to Linear SS Form

Sea-Surface Elevation (η) from the Summing of 1st- (η_1) & 2nd- (η_2) Order Waves

Substructure Structural-Dynamic Enhancements (SubDyn)

- New SubDyn module supports fixedbottom multi-member substructures:
 - Linear frame finite-element beam model
 - Craig-Bampton dynamic system reduction
 - Static-improvement method

Finite-Element Discretization of the OC3-Tripod

Mooring Enhancements (MAP)

- New **MAP** module supports multi-segmented mooring systems:
 - Quasi static
 - Taut or catenary lines
 - Elastic stretching

 - Apparent weight of lines
 Clump weights & buoyancy tanks
 Seabed friction
 - Seabed friction
 - Nonlinear geometric restoring

MOORING

ANALYSIS PROGRAM

Example Multi-Segmented Mooring System Analyzed by **MAP**

Ongoing Developments

- Framework:
 - Linearization
 - Transition to a developer community
- Aerodynamics:
 - AeroDyn overhaul
 - FAST-OpenFOAM-WRF coupling
 - DWM dynamic wake meandering (UMass)
- Hydrodynamics:
 - User-defined wave input
 - FIT nonlinear fluid-impulse theory (MIT)
 - IceFloe & IceDyn ice loading (DNV-GL & UMich)
- Control & electrical drive:
 - MATLAB/Simulink interface
 - TMD mass-damper DOFs (UMass)
- Structural dynamics:
 - BeamDyn nonlinear (geometrically exact) beam spectral finite-element blade dynamics
 - MoorDyn lumped-mass mooring dynamics (UMaine)
 - **FEAM** finite-element dynamics (TAMU)
 - OrcaFlex interface for mooring dynamics

Verification of New Offshore Features

- New offshore fixed-bottom & floating features of FAST have been verified against results from OC3 & OC4 projects
- Key findings:
 - Very good agreement to other tools with similar capabilities
 - 2nd-order hydrodynamics important for low-frequency response
 - Future needs in strip theory:
 - Solving loads up to instantaneous free surface
 - Accounting for member overlap at joints

Validation of New Offshore Features

- New floating features of FAST are being validated in several projects
- Key findings:
 - Numerical model calibration often needed where data or model uncertainty exist
 - C_D strongly dependent on geometry
 - Strip theory captures mean loads, but neglects vortex shedding
 - 1st-order wave response modeled well
 - 2nd-order wave effects important at low & high frequencies
 - Quasi-steady mooring model good for global response; dynamics needed for mooring loads

OpenFOAM CFD

DeepCwind

WindFloat

Hywind

Conclusions & Outlook

- Engineering models required to address design challenges, so that offshore wind turbines are:
 - Innovative
 - Optimized
 - Reliable
 - Cost-effective
- Improved models are needed to address/develop:
 - Upscaling to larger sizes
 - Novel architectures & controls
 - Coupling to offshore platforms
 - Design at the wind-plant level
 - System-wide optimization

10

SWT-6.0-154 with Airbus A380

More information @: https://nwtc.nrel.gov

Carpe Ventum!

Jason Jonkman, Ph.D. +1 (303) 384 – 7026 jason.jonkman@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.