

EERA DeepWind'2015

12th Deep Sea Offshore Wind R&D Conference

Study of the effect of water depth on potential flow solution of the OC4 Semisubmersible Floating Offshore Wind Turbine

Bayati I.^a, Gueydon S.^b, Belloli M.^a

^a Department of Mechanics, **Politecnico di Milano**, Milano, Italy

^b Maritime Research Institute Netherlands, **MARIN**, Wagenignen, The Netherlands

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution
 - 2. Shallow water waves
- 3. Preliminary considerations (dispersive waves)
- 4. Results
- 5. Conclusions

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution
 - 2. Shallow water waves
- 3. Preliminary considerations (dispersive waves)
- 4. Results
- 5. Conclusions

Wind System:

OC4 – IEA Task 30 – Phase II : Floating Semisusbmersible

Water depth: 200m Draft: 20 m

Main questions:

What if we considered lower water depth for this system?

How is the potential flow affected?

<u>Reference state of art:</u>

Studies on the hydrodynamics of Liquified Natural Gas Carriers (LNGC) in shallow waters

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution
 - 2. Shallow water waves
- 3. Preliminary considerations (dispersive waves)
- 4. Results
- 5. Conclusions

Modelling approach: potential flow

Computational Tools (MARIN):

DIFFRAC:3D panel-based solveraNySIM:Time domain analysis of FOWT

Hydrodynamics:

First order: Added Mass, Damping, Wave Excitation Forces

Second order: Quadratic Transfer Functions QTFs

Pinkster approximation of the second order velocity potential

Degrees of Freedom investigated:

Surge, Heave, Pitch

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution

2. Shallow water waves

- 3. Preliminary considerations (dispersive waves)
- 4. Results
- 5. Conclusions

Modelling approach: shallow water waves

Shallow water: setdown effect

• Long waves bound to short waves

$$\begin{split} \xi &= \xi^{(1)} + \xi^{(2)} = \\ &= \sum_{i=1}^{N} a_i cos(\omega_i t + \epsilon_i) + \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j D(\omega_i, \omega_j, k_i, k_j) cos((\omega_i - \omega_j)t + \epsilon_i - \epsilon_j) \end{split}$$

- System's natural frequency range (+ difference frequency QTFs)
- The less water depth, the more setdown effect

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution
 - 2. Shallow water waves
- 3. Preliminary considerations (dispersive waves)
- 4. Results
- 5. Conclusions

Preliminary considerations (dispersive waves)

Dispersion relation:

$$\omega(k) = \sqrt{g \cdot k \cdot tanh(kh)}$$

Dispersion limit:

 $\lambda = 4h$

As the water depth varies...

- Heave is expected to be affected the most
- Above 1-1.2 rad/s no difference is expected

Ilmas Bayati

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution
 - 2. Shallow water waves
- 3. Preliminary considerations (dispersive waves)
- 4. Results
- 5. Conclusions

OC4 – Load Case 2.2

Load case $(F^1 + F^2)$	Туре	Mean [m]	Surge Standard Deviation [m]	Mean [m]	Heave Standard Deviation [m]	Mean [deg]	Pitch Standard Deviation [deg]
<i>h</i> = 30 m	No Setdown	1.75	2.017	0.031	0.183	0.006	0.584
	Setdown	1.802	2.616	0.031	0.205	0.006	0.556
h = 40 m	No Setdown	1.473	1.514	0.032	0.203	0.027	0.619
	Setdown	1.495	1.769	0.032	0.207	0.026	0.603
h = 50 m	No Setdown	1.396	1.405	0.031	0.227	0.032	0.647
	Setdown	1.409	1.507	0.031	0.228	0.032	0.636
h = 60 m	No Setdown Setdown	1.371 1.380	1.358	0.030 0.030	0.246 0.246	0.034 0.034	0.663 0.653
h = 200 m	No Setdown	1.371	1.334	0.030	0.275	0.036	0.682
	Set Down	1.373	1.338	0.030	0.274	0.036	0.677

Setdown effect plays an important role on Surge

Water depth plays an important role on Heave

Results: Power Spectral Densities

Setdown effect plays an important role on Surge

(Setdown wave + 1° Order hydrodynamics) + Difference QTFs (2° order hydrodynamics)

Results: Power Spectral Densities

Water depth plays an important role on Heave

Ilmas Bayati

POLITECNICO DI MILANO

1.2

1.4

 $h = 30 \text{ m} - F^{(2Tot)}$

- 1. Introduction and motivation of this work
- 2. Modelling approach
 - 1. Potential Flow Solution
 - 2. Shallow water waves
- 3. Preliminary considerations (dispersive waves)
- 4. Simulations
- 5. Results

6. Conclusions

- 1. OC4-Semi Heave natural frequency for shallow water (30 m) cannot be seen as "dispersive" as for deep water (200 m)
- 2. Setdown effect plays an important role on Surge
- 3. Water depth plays a important role on Heave
- 4. Surge less influenced by water depth as expected (LNGC):

(OC4-Semi more transparent to waves)

5. Heave more affected by water depth, although influence is little.

Thank you!

Study of the effect of water depth on potential flow solution of the OC4 Semisubmersible Floating Offshore Wind Turbine

Bayati I.^a, Gueydon S.^b, Belloli M.^a

^a Department of Mechanics, Politecnico di Milano, Milano, Italy
^b Maritime Research Institute Netherlands, MARIN, Wagenignen, The Netherlands

ilmasandrea.bayati@polimi.it

Ilmas Bayati

Load Case:

OC4-L.C.2.2 Jonswap Spectrum: Hs = 6m, Tp = 10s

Simulation time:

Total simulation – 4500 s Start-off statistic – 1000 s (regime) Sampling time – 0.1 s

Viscous damping: Constant (OC4)

Contributions:

- First order forces
- Second order forces (Pinkster)
 - Quadratic contribution (I-IV)
 - Total Contribution (I-V)
- Incoming wave train with setdown effect

Natural frequencies

Ilmas Bayati

$$\vec{F}^{(2)} = \vec{F}_{I}^{(2)} + \vec{F}_{II}^{(2)} + \vec{F}_{III}^{(2)} + \vec{F}_{IV}^{(2)} + \vec{F}_{V}^{(2)}$$

$$= -\frac{1}{2}\rho g \int_{WL} \xi_{(1),rel}^{2} \cdot \vec{n}_{0} \cdot \vec{dl} + \frac{1}{2}\rho \iint_{S} \nabla \Phi_{(1)} \cdot \nabla \Phi_{(1)} \cdot \vec{n}_{0} \cdot dS + \iint_{S} \rho \cdot X_{(1)} \cdot \nabla \frac{\partial \Phi}{\partial t} \cdot \vec{n}_{0} \cdot dS + \vec{\Omega}_{(1)} \times M \vec{X}_{(1)} + \rho \iint_{S} \frac{\partial \Phi_{(2)}}{\partial t} \cdot \vec{n}_{0} \cdot dS$$

1/2

2/2

2/2

