

Wind Farm Simulator; Time-dependent wind energy calculations

Ove Undheim

Co-authors: Martin Sigurd Grønsleth, Erik Berge, Emilie Iversen and Linn Rognlien

EERA DeepWind'2015, Trondheim

Overview

- What is Wind Farm Simulator (WFS)?
- What is needed to run WFS?
- Layout optimization
- Example from WFS results at Smøla
 - Wind shear module
 - TI influence on the production
 - Density influence on the production
 - Influence of turbine operation
 - Optimizing of maintenance

What is Wind Farm Simulator?

- WFS is developed in a cooperation project with Statkraft, University of Oslo and Kjeller Vindteknikk as involved partners
- WFS is a time dependent methodology to estimate the wind farm production. This means that the production is estimated for each turbine at each defined time stamp.
 - Applications
 - Pre construction Energy Yield Assessment
 - Post construction follow-up of wind farm production, calculation of lost production
 - Optimizing of O&M (Operation and Maintenance)
 - Production forecasting
 - Down-rating/curtailment

What is needed to run WFS?

- Time series of wind speed, turbulence, wind shear (voluntary), air density (voluntary) and operational status (voluntary)
 - Historical time series in wind farm energy yield estimates and production analyses
 - Forecasted time series in power forecasting and planning of O&M
- Coordinates and heights for turbines and met mast
 - Conversion ratios between the met mast and turbines (for wind speed and possibly turbulence)
- Turbine power- and c_t curve

Layout optimization

- Annual wind statistics:
 - Typically directions of 30°
 → Production influence of small turbine movements becomes inaccurate
- Time dependent calculations:
 - Typically 5° accuracy of direction measurements

 → Production influence of small turbine
 movements becomes more accurate using a wake
 model representing the true wake. In WFS
 Dynamical Wake Meandering model is
 implemented in addition to the more simple
 Jensen model

Example from Smøla

Wind shear module

- Implemented module calculates the wind shear based on "1D Gryning wind profile model" (Gryning et al., 2007).
- Input data: "Boundary layer height, friction velocity and vertical heat fluxes"
- Improved estimate of the total wind shear coefficient α between 30 m and 70 m:

Parameter	Observations	Gryning	WRF	WAsP
Wind shear annual mean	0.21	0.21	0.14	0.14

Minor influence on the estimated annual production using rotor equivalent wind speed

TI dependence of turbine in wake

TI dependence all turbines

	Wake loss [%] TI _{Low}	Wake loss [%] TI _{Mean}	Wake loss [%] TI _{High}
Measured wake loss	14.6	10.6	7.9
Modelled wake loss with time-dependent approach	10.2	8.6	7.3
Modelled wake loss WAsP (turbulence dependent WDC)	10.2	8.2	6.5
Mean TI of group [%]	7.3	10.2	14.3

Production density dependence

Mnd	Mean temp [^o C]	Prod error
Jan	2.1	-0.5 %
Feb	3.2	-0.8 %
Mar	1.6	-0.2 %
Apr	5.7	-0.5 %
Мау	8.2	-0.6 %
Jun	11.6	0.9 %
Jul	14.2	3.3 %
Aug	12.3	1.3 %
Sep	9.2	0.4 %
Oct	7.6	-0.4 %
Nov	3.7	-0.5 %
Dec	3.4	-0.7 %

Influence of operational status

- The production loss caused by down time is directly estimated for the period.
- The production gain of down wind turbines caused by missing wake is directly estimated for the period.

Measured direction and velocity at the meteorological mast

Production loss: 26.2 MWh

Production gain: 5.1 MWh (20 % of prod loss)

VINDTEKNIKK

Optimizing of Maintenance

- Maintenance scenario:
 - All the turbines of Smøla 1 (turbine 1-20) needs maintenance, but only one (or a few) turbine(s) can be shut down at a time.
 - Evaluate which turbines to shut down in the period from 8-16 the following two days.

Maintenance example 10-12th November 2007

VINDTEKNIKK

Summary

- Wind Farm Simulator (WFS)
- Resolved time dependent variations
- Currently taking time dependence in TI (through wakes), wind shear, operational status and density into account.
- Used for optimization of planned maintenance
- Can be used in layout optimization

Ove Undheim <u>ove.undheim@vindteknikk.no</u> Martin S. Grønsleth <u>martin.gronsleth@vindteknikk.no</u>