Comparative Levelized Cost of Energy Analysis

EERA DeepWind 2015

aRaphael Ebenhoch, aDenis Matha, bSheetal Marathe, cPaloma Cortes Muñoz, cCliment Molins

aUniversity of Stuttgart, Stuttgart Wind Energy (SWE)
bUniversity of Stuttgart, Institute for Energy Economics and the Rational Use of Energy (IER)
cGas Natural Fenosa, Spain
dUniversitat Politecnica de Catalunya, Department of Construction Engineering
Content

- Motivation
- General Methodology for Economic Evaluation
- LCOE-Analysis Tool
 - Build-up
 - Overview Cost functions and Key Assumptions
 - Characteristics Floating Concept
- Results
 - Cost Breakdown
 - Sensitivity Analysis
- Target LCOE for offshore wind energy plants
 - Bottom-fixed
 - Floating
- Conclusion/Outlook
Motivation

Trends in the Offshore Industry:

- Distance to shore ↑
- Water depth ↑
- Turbine size ↑

Prototypes have already proven **technical** feasibility of FOWTs

Current Challenge:
Design of **Economic** FOWT Concepts

LCOE Evaluation required

Source: EWEA, 2014
Berger, 2013
General Methodology - Economic Evaluation

Approach:

Life-Cycle Cost Analysis

1. Project Management and Consenting
2. Production and Acquisition
3. Installation
4. Operation and Maintenance
5. Decommissioning
Levelized Cost of Energy (LCOE)

\[LCOE = \frac{I_0 + \sum_{t=1}^{n} \frac{A_t}{(1+i)^t}}{\sum_{t=1}^{n} \frac{M_{el}}{(1+i)^t}} \]

- **LCOE**: Levelized cost of electricity in €ct/kWh
- **I₀**: Capital expenditure (CAPEX) in €ct
- **Aₜ**: Annual operating costs (OPEX) in year \(t \)
- **Mₑₑ**: Produced electricity in the corresponding year in kWh
- **i**: Weighted average cost of capital (WACC) in %
- **n**: Operational lifetime in years
- **t**: Individual year of lifetime (1,2,…n)

Life-Cycle Analysis approach combined with LCOE to enable an economic assessment and comparison among substructure types.

Source: EWEA, 2009
LCOE-Tool – Input Parameter

Implemented Substructure Types:

- Generic steel FOWTs
- Bottom-fixed Solutions
- AFOSP Concept (Concrete Structure)

Site- and Substructure-specific LCOE

- Capital costs (CAPEX)
 - Consenting/Development
 - Project Management
 - Turbine Nacelle
 - Turbine Rotor
 - Support Structure
 - Substation
 - Array/Export Cables
 - Installation
 - Insurance
 - Etc.

- Operating costs (OPEX)
 - Operations and Maintenance
 - Operating Phase Insurance
 - Transmission Charges
 - Seabed Rent
 - Etc.

- Decommissioning costs (DECEX)
 - Included: Revenues from recycling and resale

- Annual energy production
 - Capacity Factor
 - Losses
 - Availability
 - Net AEP

- Weighted average cost of capital
 - Capital structure
 - Equity and debt return

- Timing
 - Phasing of capital and operating costs and energy production over time
 - Replacement cycles (Substructure, Turbine)

Directly depending on parameters like "water depth", "distance to nearest operation port" and installed "turbine size"

Manual entries
LCOE-Tool – Level of Detail

Management activities
- Project Consenting and Development
- Project Management
- Construction Phase Insurance

Grid connection
- Array/Export Cables
- Internal Substation

Turbine Nacelle
- Gearbox
- Electrical Connection
- Generator
- Main Bearing
- Power Electronics
- Yaw System
- Low-speed Shaft
- Others (Mainframe, Aux System, Cover)

Substructure and Tower
- Monopile
- Jacket
- Floating Foundation

Source: EnBW, 2013
Ramboll Wind, 2013
Main parameters:
- Water depth
- Turbine size
- Distance to shore

Input Window

Data sheet for bottom-fixed solutions

Data sheet for AFOSP-concept

CAPEX, OPEX and DECEX depending on the main parameters

LCOE calculation

Result Window

Manual entries:
- Goss load factor
- Losses
- Availability
- WACC etc.

Basic Costs

Scaling Factor

199 €/MW \times 1 \times 1.11 = 221 €/MW
<table>
<thead>
<tr>
<th>Summarized Cost categories</th>
<th>Bottom-fixed</th>
<th>Floating</th>
<th>Example Cost functions</th>
<th>Comments/Key assumptions</th>
</tr>
</thead>
</table>
| Jacket (Monopile in water depths < 35m) Transition Piece | $f(w,t)$ | - | ![Graph](image1.png) | • Cost calculation based on weight estimation of jacket/monopile structures
• Specific material and manufacturing costs: 5.8 €/kg |
| Pin Piles Transition Piece | $f(w,t)$ | - | ![Graph](image2.png) | • Conservative approach, due to higher wave loads for deep water sites
• Costs for material and manufacturing: 2 €/kg |
| Floating Foundations | - | $f(t)$ | ![Graph](image3.png) | • AFOSP: Based on material/production cost estimation
• Floating: Mean value of several floating concepts |
| Turbine (Rotor + Nacelle) | $f(t)$ | $f(t)$ | ![Graph](image4.png) | • Turbine model independent from considered type of foundation
• As an example for an Rotor-respectively Nacelle-component, the cost function of the gearbox and the turbine blades are illustrated |
SWE

LCOE-Tool – Cost functions/Key Assumptions

Specific cost / MW

Scale factor for base cost

Jacket (Monopile in water depths < 35m) Transition Piece

\[f(w,t) = 446\,000 \text{ €/MW} \]

Water depth [m]

Specific cost [€/MW]

\[y = (0.149x^2 - 5.342x + 342.299) \frac{5.8 \times 907.185}{5.5 \times 1000} \]

\[y = 0.0796x + 0.6895 \]

\[y = -0.0283x + 1.1273 \]

\[y = 0.04x + 0.8341 \]

Scale Factor

\[f(t) \]

- Floating Foundations: 1 252 000 €/MW
- Turbine (Rotor + Nacelle): 1 196 000 €/MW
Characteristics AFOSP-Concept

AFOSP-Characteristics:

- Monolithic concrete structure
- Less sensitive to corrosion
- Reduced O&M effort
- Lifetime extension of the substructure to 40 or 50 years
- Relatively simple to manufacture in an automated process (minimum of welds needed)
- Innovative, horizontal Installation process

Diagram Description:

- Project Development: 4-6 years
- Preparation and Construction: 1-2 years
- Operating Phase I: 2-4 years
- Operating Phase II: 5 years
- Decommissioning: 1-2 years

Total project duration: 47-62 years
Current mean LCOE – Fixed-Bottom

- Literature values
- Target LCOE bottom-fixed 13.47 [€ct/kWh]
- County specific data

Values adjusted for inflation

13.47 €ct/kWh
Current mean LCOE - Floating

- **Target LCOE-Floating Solutions 15.15 [€ct/kWh]**
- **LCOE [€ct/kWh]**
 - Manufacturer's information / Literature values
- **LCOE [€ct/kWh]**
 - Own calculation

<table>
<thead>
<tr>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed - Floating: Δ = 1.7 €ct/kWh</td>
</tr>
</tbody>
</table>

- 15.15 €ct/kWh

- values adjusted for inflation
4. Results – Cost Breakdown

Reference Scenario
- Gross Load Factor: 51%
- Water depth: 150 m
- Distance to shore: 60 km
- Turbine size: 4 MW
- Wind farm capacity: 500 MW
- WACC: 9%

LCOE [€ct/kWh]

- Bottom-Fixed: 29.86*
- Floating: 23.04*
- AFOSP: 17.55*

150m water depth

*without sea bed rent
4. Results – Sensitivity Analysis Comparison
4. Results – Sensitivity Analysis AFOSP

Reference Scenario
- Gross Load Factor: 51%
- Water depth: 150 m
- Distance to shore: 60 km
- Turbine size: 4 MW
- Wind farm capacity: 500 MW
- WACC: 9%

The graph illustrates the sensitivity of LCOE (Levelized Cost of Energy) to various parameters. The LCOE is shown on the Y-axis in €ct/kWh, and the change in LCOE is shown on the X-axis in [%]. The parameters include:
- Gross Load Factor
- Water depth
- Distance to shore
- Turbine size
- O&M costs
- Concrete price
- WACC

Key points:
- A decrease of -50% in water depth results in a 6.3% increase in LCOE.
- A decrease of -50% in turbine size results in a 61% increase in LCOE.
- An increase of +30% in distance to shore results in a 11.7% increase in LCOE.
- An increase of +50% in turbine size results in a 22.5% decrease in LCOE.
- A decrease of -50% in O&M costs results in a 120 km decrease in distance to shore.
4. Results – Sensitivity Analysis Bottom-fixed

- Gross Load Factor: +51%
- Water depth: +150 m
- Distance to shore: +60 km
- Turbine size: +4 MW
- Wind farm capacity: +500 MW
- WACC: +9%

Change in LCOE [%]
LCOE [€/MWh]
Parameter variation [%]
6. Conclusion/Outlook

- Developed tool helps to optimize the design and reduce the costs of deep offshore wind farms, by analyzing key aspects already during the planning and pre-design phase
- The analyzed concrete design under reference scenario conditions does neither yet reach the estimated benchmark for bottom-fixed structures in shallow waters nor the one representing FOWTs
- Sensitivity analyses illustrate, that even small parameter variations can be decisive and have a huge impact on the total LCOE
- Future technical innovations, learning curve effects and supply chain enhancements are strongly needed for FOWTs to be competitive
- Using existing synergies with the oil and gas industry seems one promising step on the pathway to commercialization
Thank You For Your Attention

Contact:
Denis Matha (matha@ifb.uni-stuttgart.de)
Raphael Ebenhoch (raphaelebenhoch@googlemail.com)
References (Selection)

Ramboll Wind (2013), T. Fischer, Cost-effective support structures for future deep water applications, Vortrag bei der EWEA Offshore Messe 2013 in Frankfurt