

Implementation of a hysteretic 3D soil model in an aeroelastic code. Dynamic analysis of an offshore wind turbine in misaligned wind and waves

EERA DeepWind'2015 12th Deep Sea Offshore Wind R&D Conference

Signe Schløer Alan Castellano Henrik Bredmose

DTU Wind Energy Department of Wind Energy

Soil models in aeroelastic models

To day:

 Soil stiffness calculated by monotonic *p*-*y*-curves (pressure and displacement) in springs in soil

 Soil damping included by constant damping ratio either in springs or as viscous modal damping.

 $\mathbf{M}\underline{\ddot{u}} + (\mathbf{C} + d)\underline{\dot{u}} + \mathbf{K}\underline{u} = \underline{F}$

Model of Hededal & Klinkvort (2010) and Klinkvort (2012)

- Cyclic pile-soil interaction
- Hysteretic damping
- Creations of gap
- Only 2D
- "Cyclic model"

- Explain the new soil model (cyclic model)
- Implemented in the aeroelastic code Flex5
- Extend the cyclic model to 3D
- Compare cyclic model with a *p*-*y* model
 - 7 wind and sea states
 - Aeroelastic calculatins
 - Equivalent loads
- o Discussion

Cyclic model Winkler model

Cyclic model Implementation in Flex5

Soil shape described by 21 equally distributed points.

Described by a Fourier function

$$\rho(\theta) = \rho_0 + \sum_{p=1}^N \left(A_p \exp(\frac{ip\theta 2\pi}{N}) + CC \right)$$

own:
$$\overline{r}_c = (x_c; y_c)$$

 $\rho_{old}(\cos \theta; \sin \theta) = (x_{old}; y_{old})$
d: $\rho_{new}(\cos \theta; \sin \theta) = (x_{new}; y_{new})$
 $l = \frac{\overline{\rho}_{old}}{|\overline{\rho}_{old}|} \overline{r}_c$
 $a = \sqrt{|\overline{r}_c|^2 - l^2}$
 $dl = \sqrt{r_{pile}^2 - a^2}$
 $\rho_{new} = dl + l$
 $x_{new} = \rho_{new} \cos \theta$

 $y_{new} = \rho_{new} \sin \theta$

=

8

- $f_{Normal,z} = f_{Normal} n_z$ $f_{Normal,y} = f_{Normal} n_y$
- $f_{Tangential,z} = f_{Tangential}t_z$ $f_{Tangential,y} = f_{Tangential}t_y$
- $f_{s,z} = f_{N,z} + f_{T,z}$ $f_{s,y} = f_{N,y} + f_{T,y}$

Update ρ so the points again are equally distributed

$$A_p = \frac{fft(\rho_{new})}{N_{point}}$$

$$\rho = \rho_0 + \sum_{p=1}^{N_p} \left(A_p \exp(\frac{ip\theta 2\pi}{N_p}) + CC \right)$$

Compare two models

Cyclic model and *p*-*y* model

Compare two models

Cyclic model and *p*-*y* model

p-y model

- Add amount of viscous damping in monopile to represent
 - soil damping
 - hydrodynamic damping
 - structural damping

Cyclic model

- Soil damping included in model
- Add 2% of logarithmic damping as viscous damping in monopile to represent
 - hydrodynamic damping
 - structural damping

Decay test

Comparison of the two models Metocean data (Upwind-project, Fischer et al. (2010))

V $[m/s]$	TI [%]	Hs [m]	Tp [m]	f [-]	f_{rel} [-]
2	29.2	1.07	6.03	0.06071	0.1237
6	17.5	1.18	5.76	0.14048	0.2862
10	15.2	1.48	5.74	0.14654	0.2986
14	14.2	1.91	6.07	0.08381	0.1708
18	13.6	2.47	6.71	0.04186	0.0853
22	13.3	3.09	7.40	0.01534	0.0313
28	11.9	4.17	8.49	0.00202	0.0041

Metocean data (Upwind-project, Fischer et al. (2010))

- NREL 5MW wind turbine
- Monopile extended 21.6 m below sea bed
 - D=6.10 m
 - t=0.085 m
- Water depth: 25 m
- Linear irregular waves
 - JONSWAP spectrum
- Turbulent wind
 - Mann model
- Misalignment between wind and waves
 - 0°
 - 90°

W=2 m/s, Hs=1.07m, Tp=6.3s, 0°

Equivalent loads Both models

28

28

W=10 m/s, Hs=1.48m, Tp=5.74s, 0°

W=10 m/s, Hs=1.48m, Tp=5.74s, 90°

Wave direction: 90°

Equivalent loads Both models

90°

3.5 × 10⁶

-Cyclic -Elastic

Conclusions

- Implemented a new soil model in 3D which includes
 - Cyclic pile-soil interaction
 - Hysteretic damping
 - Creations of gap
- Compared with normal p-y model with viscous damping
 - Very small displacements friction disapears in cyclic model
 - Damping depends on size of the displacements
- Important to calibrate viscous damping in p-y model
- > One damping for all wind speeds is not representative

