Planning of operation and maintenance using risk and reliability based methods

Mihai Florian, John Dalsgaard Sørensen
Aalborg University, Denmark
Introduction - O&M in offshore wind farms

Corrective maintenance
Run-to-failure

Preventive maintenance
• Time/condition based
• Risk-based inspections

Risk-based techniques can be used for optimal planning of
• future inspections / monitoring (time / type)
• decisions on maintenance/repair on basis of (unknown) observations from future inspections / monitoring
taking into account uncertainty and costs
Successful application in offshore oil & gas
Particular applicability to wind farms – low safety restraints
Theoretical basis – Bayesian preposterior decision theory

- Decision rule \(d(s) \)
- Reliability modeling
Theoretical basis – Reliability modeling

Analysis of failure probabilities based on different types of information:

- Observed failure rates – Classical reliability theory
- Probabilistic models for failure probabilities – Structural Reliability Theory:
 Limit state modeling & FORM / SORM / simulation
Theoretical basis – Damage modeling

Deterioration – damage accumulation:

- Deterioration processes are connected with significant uncertainty
- Observations of the actual deterioration / condition by monitoring or inspections can be introduced in the models and significantly improve the precision of forecasts

- Corrosion
- Erosion
- Fatigue
- Wear
- Etc.
Life cycle model

Simplified life cycle model – wind turbine is represented by a single component blade/welded detail

Modules

- **Environment**
 - wind/wave time series
- **Component health**
 - damage and reliability models for blade/welded details
- **Maintenance strategy**
 - inspection scheduling
 - decision criteria for repair
- **Access to wind turbine**
 - weather limitations for vessels
Example applications

Inspection planning for wind turbine blades
• Condition based
• Risk based
• Minimise life cycle cost
• What is the impact on overall cost?

Design of welded steel details
• Reducing safety factors – reduced material consumption
• Regular inspections – maintain reliability levels
• What is the impact on overall cost?
Failure modes

- Shells
 - erosion
 - delamination
 - cracking
- Cracking on main spar
- Debonding of glue joints
- Random (lightning) or unknown
Inspection planning for wind turbine blades

Initial cracking ➔ Development ➔ Failure

Deformed panel

Undeformed panel

Bladena, 2014
Inspection planning for wind turbine blades

- cracks generated at random locations on trailing edge blondline
- size of cracks generated using lognormal distribution
Inspection planning for wind turbine blades

Fracture mechanics approach

\[\frac{da}{dt} = \frac{A(\Delta K)^m}{(1-R)^m(1-\lambda_W)} \]

- simulations on NREL 5MW turbine
- determine stress distribution for operational wind speeds

Aero-elastic simulations (FAST/TURBSIM)
Inspection planning for wind turbine blades

- failure limit modeled as stochastic variable
- failure limit and material parameters calibrated to fit observed failure frequencies
Optimisation study

Fixed inspection interval 2 years
Decision criteria - damage threshold
 - failure probability

Lower overall cost from risk optimisation
Example 2 - welded detail

Design of welded steel details accounting for inspections
- Reducing safety factors – reduced material consumption
- Regular inspections – maintain reliability levels
- What is the impact on overall cost?

Damage model
- 1 dimensional fracture mechanics model based on *
- Material parameters calibrated to fit * reliability estimates

*Sørensen JD. Reliability-Based Calibration of Fatigue Safety Factors for Offshore Wind Turbines

DeepWind February 2015 Trondheim
Safety factor reduction

Required inspection plan determined in [Sørensen JD, 2012]

<table>
<thead>
<tr>
<th>$\gamma_m [-]$</th>
<th>Inspection interval [years]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>1.05</td>
<td>5</td>
</tr>
<tr>
<td>1.10</td>
<td>10</td>
</tr>
<tr>
<td>1.15</td>
<td>10</td>
</tr>
<tr>
<td>1.20</td>
<td>10</td>
</tr>
<tr>
<td>1.25</td>
<td>10</td>
</tr>
</tbody>
</table>

Life cycle model used to estimate overall cost for “repair on detect policy”

$$C(\gamma_m) = C_c \cdot \gamma_m + n_i \cdot C_i + E[n_r] \cdot C_r$$

Inspection cost is expressed as [%] of capital cost
Cost of repair is fixed at 4 times cost of inspection
Safety factor reduction

Overall cost

Fig. 6. (a) Total lifetime cost - surface (b) Total lifetime cost - sections
Conclusions

- Potential for lowered lifetime O&M cost through risk-based inspection planning
- Potential for lowered safety factors through risk-based inspection planning
- Two applications presented by illustrative examples

Future work

- More examples to be developed
- System aspects
- Applications of Bayesian networks tools are being investigated
- Applications using NORCOWE reference wind farm
Acknowldgments

• This work has partly been funded by the Norwegian Center for Offshore Wind Energy (NORCOWE) under grant 193821/S60 from Research Council of Norway (RCN). NORCOWE is a consortium with partners from industry and science, hosted by Christian Michelsen Research.

• Weather data provided by BMWi (Bundesministerium fuer Wirtschaft und Energie, Federal Ministry for Economic Affairs and Energy) and the PTJ (Projekttraeger Juelich, project executing organisation) for the FINO platform in Germany was of great help.
Thank you for your attention!