Trondheim 6 Feb 2015

KONGSBERG

Oddbjørn Malmo General Manager Technology Kongsberg Maritime, Trondheim

Optimized wind farm operation"

KONGSBERG PROPRIETARY: This document contains KONGSBERG information which is proprietary and confidential. Any disclosure, copying, distribution or use is prohibited if not otherwise explicitly agreed with KONGSBERG in writing. Any authorised reproduction in whole or in part, must include this legend. © 2013 KONGSBERG – All rights reserve

KONGSBERG

Presentation overview

• This is KONGSBERG

- Kongsberg Wind Farm Management System (WFMS)
 - Performance Monitoring
 - Wind Farm Control
 - Production Forecasting
 - Condition Monitoring
- Contributions from the «Windsense» project
- Cost savings potential

At its core, KONGSBERG integrates advanced technologies into complete solutions

- Integrating sensors and software
- Supporting human decision making, precision, safety, security
- Cybernetics, software, signal processing and system engineering
- Project and supplier management

Dynamic positioning and vessel automation **Real time drilling** support **Advanced robots Command and** control systems

International high-tech solutions, from deep sea to outer space

Advanced solutions and applications for the maritime, oil & gas, renewable wind, defence and space industry.

- Extreme Performance for Extreme Conditions -

Kongsberg Maritime - merchant marine products

Kongsberg Maritime

"The Full Picture" for Maritime and Offshore applications To be extended to Wind Power applications

11/02/2015

K-IMS Information Management System

11.02.2015

KONGSBERG

KONGSBERG Onshore/Offshore Wind

11.02.2015

Kongsberg Maritime Subsea –

Geophysical, environmental monitoring & inspection

Products:

- Sonar's and echo sounders, multi-beams during inst., sonars, sub bottom profilers, 3D monitoring/inspections
- AUV inspection survey and monitoring
- C-node sensor network CMS
- Subsea cameras for inspection ROV/AUV mounted
- Listening devices subsea noise, sea mammals

Corrosion

Deformation Marine growth Scouring C

Cable tracing & pipe laying

Noise

Presentation overview

- This is KONGSBERG
- Kongsberg Wind Farm Management System (WFMS)
 - Performance Monitoring
 - Wind Farm Control
 - Production Forecasting
 - Condition Monitoring
- Contributions from the «Windsense» project
- Cost savings potential

Kongsberg Wind Farm Management System

Integrated decision support system for optimal performance and minimized downtime and operational costs

5-8% reduction in CoE

Modules:

- Conditioning Monitoring with enhanced analysis of turbine data
- **Production Forecasting** through improved weather analysing tools/ algorithms
- Wind Farm Control with dynamic production optimizer reducing wake and turbine loads
- **Performance Monitoring;** reporting, fault analyses, trending and benchmarking of turbines and wind farms

Production optimizer, load and wake control

Reduced down time and operational cost

Reduced imbalance Improved maintenance planning Identify deviations Improved benchmarking

Performance Monitoring

11/02/2015

Power curve analysis

11/02/2015

Wind Farm Control

INCREASED PRODUCTION BY DYNAMIC FARM OPTIMIZER

- Individual set points for each turbine based on:
 - Actual wind condition
 - Turbine state/condition

REDUCED TURBINE WEAR

- Balancing of loads
- Load mitigation
- Reduced turbulence wear

Wind Farm Control – Production optimiser

11/02/2015

Production Forecasting

IMPROVED PRODUCTION FORECASTING

- Reduced imbalance cost
- 48 hours predictions
- Integration of WFC, CM and PF in one system

IMPROVED MAINTENANCE FORECASTING

- Predictions of maintenance weather windows
- Minimize production losses due to maintenance stops

Production Forecasting

11/02/2015

Condition Monitoring

11/02/2015

Condition Monitoring – analysis tool

The P-F curve

combination of measurement techniques with different detection points

Catastrophic failure

Presentation overview

- This is KONGSBERG
- Kongsberg Wind Farm Management System (WFMS)
 - Performance Monitoring
 - Wind Farm Control
 - Production Forecasting
 - Condition Monitoring

Methods

- Contributions from the «Windsense» project
- Cost savings potential

Condition Monitoring - online and offline monitoring

- •
- Sensor input
 - Existing (SCADA data)
 - Add on sensors
- Fault detection
 - Automated analyses
 - Comparison with baseline data
 - Early warning of fault development

Diagnostics

- Add on high frequency sensors
- Adaptive diagnostics

• Prognostics

- Time to service
- Remaining Useful Lifetime
- Level of service
- Enable predictive maintenance

Signal Processing - Detection and Prediction

Earlier detection of faults by improved analysis methods:

Compensate for process variations and environmental conditions by mathematical modeling

- Artificial Neural Network (ANN)
- Heat balance models
 - bearing temperature
 - electrical converter temperature

Next step:

• Improved prediction of remaining useful lifetime (RUL)

Detection of Rear Bearing Fault using ANN

- (1): The first noticeable deviation from the model occurred primo October 2010.
- The turbine stopped due to overheating twice (at (3) and (4)) and was restarted by the operator
- (5): The turbine was permanently stopped

With the chosen thresholds the method gives

- 3 months pre-warning
- 10 days earlier alarm than with standard fixed alarm limits

Parameter Selection

- Indicator: Temperature
- Parameters that may influence or relate to the indicator:
 - Rear bearing temperature (t-1)
 - Active power output (t)
 - Nacelle temperature (t)
 - Turbine speed (t)
 - - Cooling fan status-

Model based approach

e.g. bearing friction, not measured

Estimation of «bearing friction» front and rear bearing using unscented Kalman filter

Generator side heat sink temperature of frequency converter with introduced faults Measurements vs model

Complex impedance model for heat balance

Focus on early fault detection - Acoustic emission?

Signal

Presentation overview

- This is KONGSBERG
- Kongsberg Wind Farm Management System (WFMS)
 - Performance Monitoring
 - Wind Farm Control
 - Production Forecasting
 - Condition Monitoring
- Contributions from the «Windsense» project
- Cost savings potential

Fremtidens rene energisystem (RENERGI)

WINDSENSE

Add-on instrumentation for Wind Turbines

3 year project (2012-2014): Funded by RCN

Contribute to a 30 % reduction in Cost of Energy from Offshore Wind

	Work package	Responsible	2012		2013				2014					
			Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP1	GAP analysis	MARINTEK												
WP2	Functional requirement specification	STATOIL												
WP3	Evaluation of sensing methods & eq.	HIST												
WP4	Dev. data interpretation algorithms	NTNU												
WP5	Implementation in CM system	КМ												
WP6	Laboratory testing	КМ												
WP7	Field testing at pilot turbine(s)	STATOIL												
WP8	Development of prediction algorithms	SINTEF ER												
WP9	Implementation of CBM system	MARINTEK												
WP10	Analysis of cost saving potential	КМ												
WP11	Administration & dissemination	КМ												

11/02/2015

KONGSBERG

Findings and further work

GAP analysis

- A general lack of high frequency data
- Limited use of advanced signal analysis
- Limited data for lifetime prediction
- Need for improved blade monitoring
- Need for improved monitoring of high voltage components

CM methods – to be evaluated with respect to

- Early and secure detection
- Low false alarm rate
- Reliable diagnostics
- Cost/benefit ratio

The challenge

Improved methods and models for lifetime estimation

Prediction horizon at different models

Model	short term \leftarrow prediction horizon \rightarrow long term					
Houer	$<<$ MTTF *	< MTTF	MTTF	$\geq 2 \cdot MTTF$		
Stochastic models						
Failure rate models						
• Lifetime distributions (Weibull)						
Stochastic degradation models						
Physical models						
Artificial intelligence (AI)						

⁶ Condition monitoring systems that provide warning and alarms hours, days or months before a failure.

Prediction capability in dependence of size of populations

Model	small \leftarrow size of population \rightarrow large						
Model	single unit,	group, population					
	ıtem						
Stochastic models							
Failure rate models							
Lifetime distributions							
Stochastic degradation models							
Physical models							
Artificial intelligence (AI)							

Presentation overview

- This is KONGSBERG
- Kongsberg Wind Farm Management System (WFMS)
 - Performance Monitoring
 - Condition Monitoring
 - Wind Farm Control
 - Production Forecasting
- Contributions from the «Windsense» project
- Cost savings potential

How will improved CM systems contribute to a reduced Cost of Energy for Wind Power:

- Replace manual inspections with remote on-line measurements and analysis
- Implement automated diagnostics tools
- Limit the number of alarms to those that are significant (KPI's)

Downtime

- Maintenance action
- Identification

- Reduce consequential damages
- Enable delay of maintenance until proper weather window occur
- Reduce downtime by more efficient fault identification and diagnostics
- Improve maintenance planning by better diagnostics and estimation of remaining lifetime

Condition Based Maintenance (CBM)

Methods and systems employed in the offshore and maritime industry provides

- An indication of degraded performance or technical condition in a plant
- Efficient drill down capability
- Triggers further investigation with analysis and diagnostics, either through CM system or by manual inspection
- Includes decision support for intervention planning

Goal

A substantial reduction in maintenance cost and increased energy production for offshore wind turbines by

- A significant reduction in number of unplanned service trips
- A reduced number of stops and less downtime
- Controlled running at reduced load when this is safe rather than full shut down until maintenance can be performed

Output to maintenance system

- -Warnings and Alarms
- Fault diagnostics root cause analysis
- Estimates of remaining useful lifetime (P-F)
- Dynamic updating of technical condition as input to RCM risk assessment

Operation & Maintenance Costs (O&M)

- Condition Monitoring (CM)
- Performance Monitoring (PM)
- Condition based Maintenance (CBM)

Purple: Reactive Blue: Proactive

Life Cycle Cost: Pro-Active vs. Reactive Maintenance (Roeper 2009 1))

¹⁾ Source: Wind Energy OM Report 2011

O&M Strategies for Wind Turbines

The most common O&M strategies (farm owners) Source: 7th annual Wind Energy O&K Forum

- 36 % (incl. the 27%) used reactive maintenance to some degree
- 63% used preventive maintenance somewhere in their wind farm portfolio
 - Comparision with Oil&Gas (Norwegian sector)
 - 60 % of the maintenance is preventive
 - Target is 80 %

Thank you for listening!

www.kongsberg.com oddbjorn.malmo@km.kongsberg.com

A meter