EERA DeepWind'2015 12'th Deep Sea Offshore Wind R&D Conference

A Comparison of VSC-HVDC with Low Frequency AC for Offshore Wind Farm Design and Interconnection

Mr. Jonathan Ruddy*, Dr. Ronan Meere and Dr. Terence O'Donnell

Electricity Research Centre, University College Dublin, Ireland.

- Motivation
- What is Low Frequency AC transmission?
- Research Question
- Results
 - Component Losses
 - Capital Costs
 - Reliability
- Conclusions

- Offshore wind becoming much more topical in recent years
- HVAC transmission favourable for near shore wind farms
- VSC HVDC main option for far offshore wind farms
- Are there alternative options? *Low Frequency AC*

What is Low Frequency AC? electricity research centre

Why Low Frequency AC?

- Smaller capacitive charging currents = Increased transmission distance at lower frequency
- Removal of offshore converter = reduced size of offshore substation – implications for costs and losses
- Decreased losses?
- Increased reliability?
- AC system AC breakers at 16.7 Hz possible

Is Low Frequency AC transmission a viable competitor to VSC based HVDC for offshore wind?

Methodology

Methodology for comparison

LFAC	VSC-HVDC
16.7 Hz Wind Turbine Transformers	50 Hz Wind Turbine Transformers
16.7 Hz Collection Network	50 Hz Collection Network
-	Offshore Converter (VSC)
16.7 Hz Transmission Cable	HVDC Transmission Cable
Onshore Cycloconverter	Onshore Converter (VSC)

Charging current and Dielectric losses reduce with frequency

 $I_c = 2\pi f C l V$ $W_d = 2\pi f C V^2 \tan \delta$

Where W_d : Dielectric loss, f: frequency (Hz), C: capacitance (F), V: voltage (V), tan δ : insulation loss factor (0.0004 - XLPE)

Transformer: Frequency dependent losses

Assuming A_w and winding loss constant:

$$P_{Core_loss} = A_{c}A_{w}kf^{\alpha}B_{pk}^{\beta}$$

Where,
$$A_c \propto \frac{1}{f}$$

 $P_{Core_loss_50Hz} : P_{Core_loss_16.7Hz} = 50^{\alpha} : 3\left(\frac{50}{3}\right)^{\alpha}$

A_c: Area of core A_w : Area of winding window k: constant f: frequency B_{pk}: peak flux density α and β:material constants.

α =1.5 for M130-27S electrical steel

Source: W. A. Pluta, "Core loss models in electrical steel sheets with different orientation," Electr. Rev. ISSN 0033-2097, vol. 87, no. 9b, pp. 37–42, 2011.

Energy Losses

■LFAC ■VSC_HVDC

12

Capital Investment Costs

LFAC = 214.2 M€ (-47.9 M€)

VSC-HVDC = 237.3 M€ (-62.3 M€)

[1] Entso-e, "Offshore Transmission Technology," 2011.

[2] B. Van Eeckhout, "The economic value of VSC HVDC compared to HVAC for offshore wind farms," KU Leuven, 2008

[3] M. A. Parker and O. Anaya-Lara, "Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters," IET Renew. Power Gener., vol. 7, no. 4, pp. 390–400, Jul. 2013.

[4] T. Ackermann, N. Barberis Negra, J. Todorovic, and L. Lazaridis, "Evaluation of Electrical Transmission Concepts for Large Offshore Wind Farms," in Copenhagen Offshore Wind-Int. Conf. Exhib., 2005 [5] P. Djapic and G. Strbac, "Cost Benefit Methodology for Optimal Design of Offshore Transmission Systems."

[6] H. Wiechmann and K. Tischler, "Mining technologies Comparison of alternative converters with regard to their application for gearless drives for grinding mills," in Workshop SAG'2007 24-26 September, 2007.

[7] J. L. Domínguez-García, D. J. Rogers, C. E. Ugalde-Loo, J. Liang, and O. Gomis-Bellmunt, "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renew. Energy, vol. 44, pp. 267–280, Aug. 2012

Component size

	VS	C-HVDC		LFAC
Component	Volume (m ³)	Weight (Tonnes)	Volume (m ³)	Weight (Tonnes)
LV/MV trafo	1.15	2.75	3.45	8.23
MV/HV Trafo	52.52	125	157.24	374.26
Offshore Substation	16000	N/A	1000	N/A

Reliability Analysis

Calculated Unavailability from Mean Time to Repair and Failure rates data from literature

Component	λ	MTTR
	(failures/yr.)	(hrs)
Collection network	0.008	2160
Circuit Breakers	0.032	720
Offshore	0.03	4320
Transformer		
Transmission Cable	0.08	720
VSC Onshore	0.05	720
VSC Offshore	0.05	50
Cycloconverter	0.101	50
Onshore Transformer	0.02	1440

	Annual Unavailability (hrs)	Expected Energy Not Served (EENS)(MWh)
LFAC_Cycloconverter	174.2	19,678
VSC_HVDC	207.9	23,319

[8] H. J. Bahirat, S. Member, B. A. Mork, S. Member, and H. K. Høidalen, "Comparison of Wind Farm Topologies for Offshore Applications," in IEEE Power and Energy Society General Meeting, 2012, pp. 1–8.

[9] P. Djapic and G. Strbac, "Cost Benefit Methodology for Optimal Design of Offshore Transmission Systems."

[10] T. Ackermann, N. Barberis Negra, J. Todorovic, and L. Lazaridis, "Evaluation of Electrical Transmission Concepts for Large Offshore Wind Farms," in Copenhagen Offshore Wind-Int. Conf. Exhib., 2005

LFAC with a Cycloconverter

- LFAC has fewer losses
- LFAC with cycloconverter less expensive
- Reliability analysis indicated LFAC more reliable

<u>BUT</u>

- Cycloconverter Caveats
 - Large filtering required
 - More difficult to achieve grid code compliance
 - Thyristors need strong AC network
 - Cycloconverter requires a large onshore site (land use)
- Impact of increasing Transformer size
 - May need to re-design nacelle to accommodate larger components

LFAC with a VSC

- Replace cycloconverter with a back to back VSC to convert from 16.7 Hz to grid frequency
- Still no offshore converter but VSC onshore

- LFAC with a cycloconverter viable competitor to HVDC but grid connection issues may prove difficult to overcome
- LFAC connected with a VSC combines the best of both options
- Removal of offshore converter drives reduction in losses, costs, and unavailability
 - However the magnitudes of these reductions may not be as large as first expected

Acknowledgements

Jonathan Ruddy and Terence O'Donnell are both funded under the SFI funded SEES Cluster.

Ronan Meere is funded under the Third Level Institutions (PRTLI), Cycle 5 and cofunded under the European Regional Development Fund (ERDF).

The Irish Marine Institute for providing the data used in this study.

Thank you

• Questions?