

MANCHESTER 1824

The University of Manchester

Modelling and analysis of CIGRE HVDC offshore multi-terminal benchmark grid Trondheim, February 2015

Jordi Pegueroles Queralt, Mike Barnes, Oriol Gomis-Bellmunt, Antony Beddard and Fernando D. Bianchi

Motivation

- System Description
- Control of HVDC converters
 - Power Control
 - Droop control
 - Modelling components
 - DC line model
 - DC grid
- Small signal models
 - AC and DC dynamics
 - Dynamics with DeadBand
 - MT-HVDC dynamics
- Simulations Results
- Conclusions

Motivation, 4-terminal HVDC benchamrk system by CIGRE

The objective is this study is to analyse of the stability and transient performance of the 4-terminal HVDC system

Motivation

• System Description

• Control of HVDC converters

- Power Control
 - Droop control
- Modelling components
 - DC line model
 - DC grid
- Small signal models
 - AC and DC dynamics
 - Dynamics with DeadBand
 - MT-HVDC dynamics
- Simulations Results
- Conclusions

Power control of HVDC converters

Line Modelling: n T sections line model

Catalonia Institute for Energy Research

6

HVDC line model

	CIGRE	used values	
Resistance	0.0110	0.0113	Ω/km
Inductance	2.6150	0.4660	mH/km
Capacitance	0.2185	0.2800	μ F/km
Conductance	0.0550	0.0550	S/km

Analysing the physical specifications of the cable, and taking into account the presence of a return line, we have concluded that a slightly modified values from the ones used in the CIGRE model are more accurate for the study.

Motivation

- System Description
- Control of HVDC converters
 - Power Control
 - Droop control
 - Modelling components
 - DC line model
 - DC grid

Small signal models

- AC and DC dynamics
 - Dynamics with DeadBand
- MT-HVDC dynamics
- Simulations Results
- Conclusions

AC and DC small signal models

Sigma plot of the MT-HVDC system

Catalonia Institute for Energy Research

Sigma plot of the MT-HVDC system

Institut de Recerca en Energia de Catalunya Catalonia Institute for Energy Research

Pole location of the MT-HVDC system

Pole location of the MT-HVDC system

Motivation

- System Description
- Control of HVDC converters
 - Power Control
 - Droop control
 - Modelling components
 - DC line model
 - DC grid
- Small signal models
 - AC and DC dynamics
 - Dynamics with DeadBand
 - MT-HVDC dynamics
- Simulations Results
- Conclusions

Conclusions

The MT-HVDC system is stable, but the interaction among the droop controllers presents a oscillatory response in the DC voltage variation, as well as on the power output

Fig. 11: Response upon the loss of Cm-F1; 2 Droop controllers

Conclusions

The response of the **MT-HVDC** system without one of the droop converters presents a faster extintion rate than the previous case. This is also produced by the faster response of the DeadBand control of the OWP

Fig. 12: Response upon the loss of Cm-B3; only one droop controller

Motivation

- System Description
- Control of HVDC converters
 - Power Control
 - Droop control
 - Modelling components
 - DC line model
 - DC grid
- Small signal models
 - AC and DC dynamics
 - Dynamics with DeadBand
 - MT-HVDC dynamics
- Simulations Results
- Conclusions

• Careful coordination on the droop control is required, as parallel operation of droop controllers results in oscillatory response.

• The parameters and model of the HVDC cables have to be carefully chosen to match the frequency range of the study.

• The transient performance of the system can be improved with a more sophisticated droop control scheme.

Acknowledgements

The University of Manchester

Thanks for your attention!

