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Wind Cluster Management System 
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HVDC Technology Integration 

 Major impact is evoked by representing and respecting HVDC 
technology during the calculation process  

 VSC-HVDC systems are the preferred technology for offshore grids  

 Voltage control 

 Islanding operation 

 CSC-HVDC systems manageable if the grid is strong enough  

 e.g. meshed connection to onshore nodes 

 Critical size in terms of power  switching losses VSC still higher than 
CSC 

 Both technologies considered and implemented 
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Embedded Point-to-Point Connections I 
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Embedded Point-to-Point Connections II  

 Additional state-variables (source nodes) 

 Additional vector of state-variables 

 Additional mismatches representing control goals 

 Expansion of Jacobian matrix 
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Multi-Terminal HVDC with Droop-Control 
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 Unified, parallel or integrated approach: 

 

 

 

 

 New mismatch for active power 

 

 

 New element of Jacobian: 
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Comparison of Algorithms 
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 Sequentiel approach: 
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Loss Taxonomy of HVDC Systems 

Losses of
 VSC-HVDC

Transmission 
Losses Station Losses

Filter Transformer Converter 
Losses Other

Semi-Conductor 
Conduction Losses

Semi-Conductor 
Switching Losses Other
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Converter Station Setup 
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Semi-Conductor Characteristics 

 Switching losses: 
 Number of IGBT 

 Switching frequeny 

 Device current 

 Supply voltage 

 Conduction losses: 
 Linear approx. 

 Quadratic possbile 

 

 
 

IC

0

2
CT0,CT0,T0,

offonTsw,

IFIED

EEE

⋅+⋅+=

+=
Eon 
Eoff

Eon

Eoff

UF, UCE(sat)

I

(a)

0

25°C

125°C

UF, UCE(sat)

I

(b)

0

R0

U0

2
qm0am0cond IRIUP ⋅+⋅=



© Fraunhofer IWES 

Converter Topologies I 

 Two-level converter (a) 

 Analytical derivation for device current possible 

 Three-level converter/neutral point clamped (b) 

 Analytical derivation for device current possible 

 Modular multi-level converter/MMC (c) 

 Analytical approx. according to IEC draft standard possible 
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Converter Topologies II 

 350 MW Point-to-Point transmission example at nominal conditions: 

Topology 2-Level 3-Level MMC 

Switching frequency 1150 Hz 1150 Hz 150 Hz 

IGBT-Module 5SNR 13H2500 5SNA 1300K450300 CM1500HG-66R 
Transformer yes yes yes 

Filter yes yes no 
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Interconnection with the Power Flow 

 

 Assessment of arbitrary operating points  

 Converter losses as described 

 Filter losses using filter design/dimensioning approach 

 Transformer losses with load-independent and load-dependent losses 
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Study Case: CIGRE B4 DC Test System I 
 

 Modular expansion planning 
of offshore grid is assumed 

 Technology development 
during expansion assumed 
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Study Case: CIGRE B4 DC Test System II 

 

 Converter Cm-B2 only utilized by 17% in the given scenario 

 Switching losses (no-load losses) are dominant and lowering efficiency 
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Next Steps 

 

 Improving the efficiency of the calculation algorithm 

 Detailed integration of converter capabilities into the algorithm 

 State-estimation of AC/DC systems including effect of synchronized 
measurements 

 Sensitivity analysis  for estimating AC/DC interactions during power 
system operation 

 Lifetime estimation using the load model and evaluating long-term 
thermal load-cycles for robust long-time planning 

 Reliability analysis utilizing the lifetime estimation and different 
scenarios 
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RAVE Offshore Wind R&D  
International Conference on R&D for Offshore Wind Energy in the North Sea  

October 13-15, 2015 

Bremerhaven, Germany 

 

Call for abstracts coming soon! 
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Main Research Activities: 

 Offshore Power System Planning and Operation 

 Power System Dynamics Considering Renewables 
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Backup Power Flow 

 Stationary conditions 

 Non-linear problem: Newton-Raphson-Verfahren 

 Vector of state-variables xN: 

 

 Grid and node powers decomposed in active and reactive parts: 

 

 Vector of active and reactive power mismatches Δy: 

 Partial derivatives 
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