

EERA DeepWind'2015 – Session B1: Grid Connection

Multi-Terminal HVDC Modeling in Power Flow Analysis Considering Converter Station Topologies and Losses

Tobias Hennig, Fraunhofer IWES Guang Zeng, Technical University Chemnitz February, 5th 2015

Content

- Wind Cluster Management System (WCMS)
- VSC-HVDC Technology Integration
 - Embedded Point-to-Point Connections
 - Multi-Terminal with Droop-Control
 - Comparison of Algorithms
- Converter Station Loss Modeling
 - Loss Taxonomy
 - Converter Station Setup
 - Loss Models Based on Semi-Conductor Characteristic
 - HVDC Converter Topologies
 - Interconnection with the Power Flow Algorithm
- Study Case: CIGRE B4 DC Test System
- Next Steps

Wind Cluster Management System

HVDC Technology Integration

- Major impact is evoked by representing and respecting HVDC technology during the calculation process
- VSC-HVDC systems are the preferred technology for offshore grids
 - Voltage control
 - Islanding operation
- CSC-HVDC systems manageable if the grid is strong enough
 - e.g. meshed connection to onshore nodes
- Critical size in terms of power → switching losses VSC still higher than CSC
- Both technologies considered and implemented

Embedded Point-to-Point Connections I

Embedded Point-to-Point Connections II

- Additional state-variables (source nodes)
- Additional vector of state-variables
- Additional mismatches representing control goals
- Expansion of Jacobian matrix

Multi-Terminal HVDC with Droop-Control

• Unified, parallel or integrated approach:

Loss Taxonomy of HVDC Systems

Converter Station Setup

Semi-Conductor Characteristics

 I_{qm}^2

- Switching losses:
 - Number of IGBT
 - Switching frequenyDevice currentSupply voltage
- Conduction losses:

 $P_{\text{cond}} = U_0 (\cdot I_{\text{am}}) + R_0$

- Linear approx.
- Quadratic possbile

Converter Topologies I

- Two-level converter (a)
 - Analytical derivation for device current possible
- Three-level converter/neutral point clamped (b)
 - Analytical derivation for device current possible
- Modular multi-level converter/MMC (c)
 - Analytical approx. according to IEC draft standard possible

Converter Topologies II

Topology	2-Level	3-Level	MMC
Switching frequency	1150 Hz	1150 Hz	150 Hz
IGBT-Module	5SNR 13H2500	5SNA 1300K450300	CM1500HG-66R
Transformer	yes	yes	yes
Filter	yes	yes	no

350 MW Point-to-Point transmission example at nominal conditions:

WES

© Fraunhofer IWES

Interconnection with the Power Flow

- Assessment of arbitrary operating points
- Converter losses as described
- Filter losses using filter design/dimensioning approach
- Transformer losses with load-independent and load-dependent losses

Study Case: CIGRE B4 DC Test System I

- Modular expansion planning of offshore grid is assumed
- Technology development during expansion assumed

VSC	Topology	IGBT module
Cm-A1	3-Level	5SNA 1300K450300
Cb-A1	MMC	CM1500HG-66R
Cb-B2	MMC	CM1500HG-66R
Cm-B2	3-Level	5SNA 1300K450300
Cb-B1	MMC	CM1500HG-66R
Cm-B3	MMC	CM1500HG-66R
Cb-D1	3-Level	5SNA 1300K450300
Cm-E1	2-Level	5SNR 10H2500
Cm-F1	3-Level	5SNA 1300K450300
Cm-C1	3-Level	5SNA 1300K450300
Cb-C2	2-Level	5SNR 13H2500

Study Case: CIGRE B4 DC Test System II

- Converter Cm-B2 only utilized by 17% in the given scenario
- Switching losses (no-load losses) are dominant and lowering efficiency

Next Steps

- Improving the efficiency of the calculation algorithm
- Detailed integration of converter capabilities into the algorithm
- State-estimation of AC/DC systems including effect of synchronized measurements
- Sensitivity analysis for estimating AC/DC interactions during power system operation
- Lifetime estimation using the load model and evaluating long-term thermal load-cycles for robust long-time planning
- Reliability analysis utilizing the lifetime estimation and different scenarios

RAVE Offshore Wind R&D

International Conference on R&D for Offshore Wind Energy in the North Sea

October 13-15, 2015 Bremerhaven, Germany

Call for abstracts coming soon!

© Fraunhofer

Main Research Activities:

- Offshore Power System Planning and Operation
- Power System Dynamics Considering Renewables

Backup Power Flow

- Stationary conditions
- Non-linear problem: Newton-Raphson-Verfahren
- Vector of state-variables x_N:

$$\boldsymbol{x}_{\mathrm{N}} = [\delta_{1} \cdots \delta_{i} \cdots \delta_{n} \ \boldsymbol{u}_{1} \cdots \boldsymbol{u}_{i} \cdots \boldsymbol{u}_{n}]^{\mathrm{T}} = [\boldsymbol{\delta} \ \boldsymbol{u}]^{\mathrm{T}}$$

• Grid and node powers decomposed in active and reactive parts:

$$\Delta \boldsymbol{p} = \boldsymbol{p}_{\mathrm{N}} - \boldsymbol{p}_{\mathrm{K}} = \boldsymbol{0} \qquad \Delta \boldsymbol{q} = \boldsymbol{q}_{\mathrm{N}} - \boldsymbol{q}_{\mathrm{K}} = \boldsymbol{0}$$

• Vector of active and reactive power mismatches Δy :

$$\Delta \boldsymbol{y} = \begin{bmatrix} \Delta \boldsymbol{p} \ \Delta \boldsymbol{q} \end{bmatrix}^{\mathrm{T}}$$

Partial derivatives $J = \begin{bmatrix} \frac{\partial \Delta q}{\partial \delta} & \frac{\partial \Delta q}{\partial u} \\ \frac{\partial \Delta q}{\partial \delta} & \frac{\partial \Delta q}{\partial u} \end{bmatrix} \qquad \Delta x_{N,\nu+1} = -J_{\nu}^{-1} \Delta y_{\nu}$ $x_{N,\nu+1} = x_{N,\nu} + \Delta x_{N,\nu+1}$

