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• integrated modelling platform dynamic performance assessment of a floating 
offshore wind turbine 

• state-of-the-art numerical simulation of the hydro-, aero- and structural dynamic 
behavior of the floating wind turbine 

• Sub-models of generator and converter controllers and the power network 

• allows analyzing response of floating turbines to grid faults, interactions and 
potential conflicts between controllers 

• study case presented aims to illustrate the applicability of an integrated model to 
assess response of floating wind turbines and control performance in the event 
of grid disturbances 
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Introduction 
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Implementation of the integrated wind turbine model 
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• interface between the electrical system and mechanical sub-models are rotor speed (ωr), 
speed of tower movement (Δβ), electrical torque (Me) and pitch angle (β) 

• simulation time step of 0.025s 
– It is assumed that the electric time constants ≈ 0, i.e. all the electrical systems and control 

loops have immediate response. 
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Parameter Value 
Rated power 5 MW 
Number of rotor blades 3 
Rotor diameter 126 m 
Tower height 77.6 m 
Nacelle mass 240 tons 
Blade mass 16.84 t 
Hub mass 56.84 t 
Tower mass 347.46 t 
Shaft axis tilt 5 deg 
Blade pre-cone 2.5 deg 
Rotor inertia  
(inc. hub/low speed shaft) ~2.6e7 kgm2 

• Wind turbine 
– 5 MW turbine mounted on floating spar-buoy support 

structure 

– based on the benchmark model developed by the OC3 [1] 

• Floating spar 
– equilibrium stick-up position above mean sea-level: 10 m 

– has a slimmer section at the top where the wave loads are 
largest, and a larger diameter cross section at the lower part 

• Mooring lines 
– modeled as structural beam elements with very low bending 

stiffness  

– Each mooring line consists of 106 beam elements, which are 
subjected to wave loads and drag forces based on the 
structural response 

Floating wind turbine 

[1] J. M. Jonkman and W. Musial, "Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology 
and Deployment," NRELDecember 2010 2010. 
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Electrical system sub-model 

• The generator, generator-side converter and their control are modeled simply as a 
generator speed controller  

• Grid-side converter controller controls DC-link voltage and grid side voltage 

• DC link dynamics  

• De-loading loop and breaking resistor (chopper) are used for DC voltage control 

• Pitch controller and electrical grid 
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• wind speed of 11 m/s => 90% of rated power 

• symmetrical 3 phase fault for 100ms 

– 80% voltage dip at the stiff grid (ugrid) 

– 50% voltage dip at turbine connection point 

• artefact of the simplified modeling of electrical system 

– converter terminal voltage and reactive power do not 
immediately return to the pre-fault value after fault 
clearance 

– additional simulation effect around 80.3 seconds in all 
the curves 

– does not affect the conclusions of this study regarding 
mechanical system response to a grid fault 

• Study cases 

– Case 1: still water 

– Case two: Wave conditions 

Simulation studies 
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Electrical results 
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• DC-link voltage control using de-loading 
loop is achieved by reducing the 
reference electrical torque linearly when 
the DC-link voltage exceeds the pre-
defined value (1.2pu) 
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• Reduction in electrical torque causes 
an increase in rotor speed which leads 
to conversion of aerodynamic input 
power into kinetic energy 
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Tower bending moments: still water 
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•  (a) around X-axis (wind direction), (b) around Y-axis, and (c) around Z-axis 

• tower bending moment around the X- and Z-axis are affected by the fault 

Tower top bending moment Tower bottom bending moment 
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Tower bending moments: Wave conditions 
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• significant wave height of 6m and spectra peak period of 11 seconds 

• The results for the electrical outputs are similar to that of the no wave condition 

 

 (a) around X-axis (wind direction), (b) around Y-axis, and (c) around Z-axis 
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Conclusion 
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• integrated model platform suitable for detailed analysis of grid and floating wind turbine 
interactions has been presented and demonstrated 

• floating turbine's response to a symmetrical three phase grid fault, that caused a 50% 
voltage drop at the turbine converter's terminal, was studied 

• the turbine rides through voltage-dip without severe effects on electrical systems 

• In the mechanical system, significant, but not critical, dip in tower top bending moment 
around the X-axis, direction parallel to the wind, was observed 

• tower-top bending moment fluctuations observed in these two cases are about 30% and 
50%. This is comparable to aerodynamic load fluctuations of 30% due to turbulence and is 
believed not to be critical and not a driving factor for turbine design 

• simulation results may be validated using measurements from actual fault cases, or 
through a controlled setup using of a short-circuit emulator such as the 8 MVA DipLab 
facility 
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Tower top bending moments in sea wave conditions 
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(a) around X-axis (wind direction), (b) around Y-axis, and (c) around Z-axis 
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