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Introduction

* integrated modelling platform dynamic performance assessment of a floating
offshore wind turbine

» state-of-the-art numerical simulation of the hydro-, aero- and structural dynamic
behavior of the floating wind turbine

* Sub-madels of generator and converter controllers and the power netwaork

 allows analyzing response of floating turbines to grid faults, interactions and
potential conflicts between controllers

e study case presented aims to illustrate the applicability of an integrated model to
assess response of floating wind turbines and control performance in the event
of grid disturbances
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Implementation of the integrated wind turbine model
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» interface between the electrical system and mechanical sub-models are rotor speed (w),),
speed of tower movement (4/), electrical torgue (M,) and pitch angle ()

e simulation time step of 0.025s

— Itis assumed that the electric time constants = 0, i.e. all the electrical systems and control
loops have immediate response.
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Floating wind turbine

e Wind turbine

— 5 MW turbine mounted on floating spar-buoy support
structure

— based on the benchmark model developed by the 0C3 [1]
* Floating spar
— equilibrium stick-up position above mean sea-level: 10 m
— has a slimmer section at the top where the wave loads are
largest, and a larger diameter cross section at the lower part
* Mooring lines

— madeled as structural beam elements with very low bending
stiffness

— Each mooring line consists of 106 beam elements, which are
subjected to wave loads and drag forces based on the
structural response
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Parameter Value
Rated power 5 MW
Number of rotor blades 3
Rotor diameter 12bm
Tower height /716m
Nacelle mass 240 tons
Blade mass 16.84 t
Hub mass 56.84 t
Tower mass 34746t
Shaft axis tilt 5 deq
Blade pre-cone 2.5 deq
ﬁr%%h%eflg\?/ speed shaft) [-2.6e7 kgqm2

[1] J.M. Jonkman and W. Musial, "Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology

and Deployment,” NRELDecember 2010 2010.
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Electrical system sub-maodel
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* The generator, generator-side converter and their control are modeled simply as 3
generator speed cantroller

e (rid-side converter controller controls DC-link voltage and grid side voltage

e DClink dynamics

« De-loading loop and breaking resistor (chopper) are used for DC voltage control
e Pitch controller and electrical grid
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Simulation studies 1 A o
50.8 i C
e wind speed of 11 m/s => 0% of rated power 906
e symmetrical 3 phase fault for 100ms 504
— B0% voltage dip at the stiff grid (uy,,) 02
— 50% voltage dip at turbine connection point TR -

« artefact of the simplified modeling of electrical system Timefs]

— converter terminal voltage and reactive power do not §1f N
immediately return to the pre-fault value after fault %82 H
clearance 2 04 !
202
— additional simulation effect around 80.3 seconds inall < %795 8 85 8 85 &
the curves (a)
— does not affect the conclusions of this study regarding %%
mechanical system response to a grid fault 582
e Study cases %83 1.
t Y9 795 8 85 8 &5 8

— (ase 1: still water

— (ase two: Wave conditions

SINTEF Technology for a better society 7




Electrical results
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* DC-link voltage control using de-loading e Reduction in electrical torque causes

loop is achieved by reducing the an increase in rotor speed which leads
reference electrical torque linearly when to conversion of aerodynamic input
the DC-link voltage exceeds the pre- power into kinetic energy

defined value (1.2pu)
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Tower bending moments: still water «J?”" H

Tower top bending moment Tower bottom bending moment
45 _ 4
E 4 AT 2 T ]
< 3 '} X 1
>39 79.5 80 80.5 81 815 82 %o 79.5 80 80.5 81 815 82
@) (@)
2 92
E 15 § 925 —
I>__'0.5 '>—_' -93
079 79.5 80 80.5 81 815 82 -93'%9 79.5 80 80.5 81 81.5 82
() ()
0.5 1
Y E
P z
£ o5 2os S
1. N
79 795 80 8(2-)5 8l 815 82 %o 79.5 80 80.5 81 815 82
Time[s] (©)

Time[s]

« (a) around X-axis (wind direction), (b) around Y-axis, and (c) around Z-axis

 tower bending moment around the X- and Z-axis are affected by the fault
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Tower bending moments: Wave conditions

Tower top bending moment

Tower bottom bending moment
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(3) around X-axis (wind direction), (b) around Y-axis, and (c) around Z-axis

significant wave height of bm and spectra peak period of 11 seconds

The results for the electrical outputs are similar to that of the no wave condition
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Conclusion

integrated madel platform suitable for detailed analysis of grid and floating wind turbine
interactions has been presented and demonstrated

 floating turbine's respanse to a symmetrical three phase grid fault, that caused a 50%
voltage drop at the turbine converter's terminal, was studied

« the turbine rides through voltage-dip without severe effects an electrical systems

* Inthe mechanical system, significant, but not critical, dip in tower top bending moment
around the X-axis, direction parallel to the wind, was observed

e tower-top bending moment fluctuations observed in these two cases are about 30% and
50%. This is comparable to aerodynamic load fluctuations of 30% due to turbulence and is
believed not to be critical and not a driving factor for turbine design

e simulation results may be validated using measurements from actual fault cases, or
through a controlled setup using of a shaort-circuit emulator such as the 8 MVA DipLab
facility
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Generator speed control
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Tower top bending moments in sea wave conditions
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(8) around X-axis (wind direction), (b) around Y-axis, and (c) around Z-axis
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