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• Demand for VSC-HVDC systems is growing worldwide. 

• Modular Multi-level Converters (MMC) is the VSC topology 

of choice.  

• Focus is on the DC components 

VSC-HVDC 

XT=15%

Yg/D

MMC2

Vs2(abc)

220kV 370kV

D/Yg

MMC1

Is1(abc)

PCC1
XT=15%

370kV 410kV

Vs1(abc)

Idc1

Is2(abc)

AC voltage magnitude and 

frequency control 

1000MW 

Windfarm1

Active and reactive power 

control

Rbrak

Vdc2

PCC2

Vn

SCR=3.5

Zn

XT=15%

Yg/D

MMC3

Vs3(abc)

220kV 370kV

D/Yg

MMC4

Is4(abc)

PCC4
XT=15%

370kV 410kV

Vs4(abc)

Idc4

Is3(abc)

AC voltage magnitude and 

frequency control 

1000MW 

Windfarm2

Active and reactive power 

control

Rbrak

Vdc3

125km DC cable

PCC3

Vn

SCR=3.5

Zn

130km DC cable

200km DC cableIdc2

Idc3



Power Conversion Group       

School of Electrical and Electronic Engineering 

The University of Manchester, UK 

DeepWind’2015 

Trondheim 

4-6th February 2015 

MMC 

SM1

Arm

Single IGBT

Sub-module

SM2

SMn

SM1

SM2

SMn

SM1

SM2

SMn

SM1

SM2

SMn

SM1

SM2

SMn

SM1

SM2

SMn

Larm

+Vd/2

-Vd/2

Va

0V

Iua

Ila

Vua

Vla

• Types of MMC 

• Half-bridge  

• Full-bridge 

• Alternate arm converter 

 

• Selecting MMC Parameters 

• Number of voltage levels 

• SM capacitance 

• Arm reactance 
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MMC Modelling Techniques 

• Type 1 – Full physics based model 

• Type 2 – Full detailed model  

• Type 3 – Traditional detailed model (TDM) 

• Type 3.5 – Accelerated model (AM) 

• Type 4 – Detailed equivalent model (DEM) 

• Type 5/6 – Average value model (AVM) 

• Type 7 – Phasor domain model 

• Type 8 – Power flow model 
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Comparison of TDM(3), AM(3.5) and DEM(4) 

DC line-to-line Fault   

DC Fault 

Signal DEM error (%) AM error (%) 

Id 0.41 2.29 

Va 0.22 1.12 

Iua 0.51 1.83 

Vc 0.07 0.07 
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HVDC Cable Modelling 

Types of HVDC Cable Model:- 

• Lumped Parameter Model 

• Bergeron Model 

• Frequency Dependent Mode Model (FDMM) 

• Frequency Dependent Phase Model (FDPM) 

 
Layer Material 

Radial Thickness 

(mm) 

Resistivity 

(Ω/m) 

Relative 

Permittivity 

Relative 

Permeability 

Conductor Stranded Copper 24.9 2.2x10-8* 1 1 

Conductor screen Semi-conductive polymer 1 - - - 

Insulation XLPE 18 - 2.5 1 

Insulator screen Semi-conductive polymer 1 - - - 

Sheath Lead 3 2.2x10-7 1 1 

Inner Jacket Polyethylene 5 - 2.3 1 

Armour Steel 5 1.8x10-7 1 10 

Outer cover Polypropylene 4 - 1.5 1 

Sea-return Sea water/air - 1 - - 

*Copper resistivity is typically given as 1.68*10-8Ω/m. It has been increased for the cable model in PSCAD due to the stranded 

nature of the cable which cannot be taken into account directly in PSCAD.  
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Comparison of Cable Models 

• The choice of cable model can have a 

significant impact on the simulation 

results. 

 

• Computational efficiency is 

approximately the same for the 

travelling wave models. 

 

• The CEPIM was found to be the least 

computationally  efficient model. 

 

• FDPM is therefore the default model of 

choice for typical VSC-HVDC studies 

in this work. 
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Dynamic Braking System 

• Typically employed for HVDC windfarm connections 

• Normally located onshore 

• Common models: 

• Voltage dependent current source 

• Power electronic switch with resistor 

• Control – Two level switching, PWM etc. 
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HVDC Circuit Breaker 

• Required for large HVDC grids 

• Hybrid DC breakers are currently the preferred topology 

• Modelling options – Cigre WG B4-57 technical brochure 
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Control 

• MMC Control 

 
• Modulation - Nearest level control (NLC), selective harmonic elimination etc. 

• Capacitor balancing controller (CBC) 

• Circulating current suppressing controller (CCSC),  

• Outer controllers similar to traditional VSCs. i.e. not specific to valve topology 
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MTDC Control Strategies 

 Control Method MMC1 control mode MMC4 control mode Comments 

Centralised DC slack bus DC voltage & AC voltage 

magnitude 

Active power & reactive 

power 

P*=500MW 

Voltage margin control DC voltage & AC voltage 

magnitude 

Voltage margin & reactive 

power 

Vd-High=620kV,  

Vd-Low=580kV 

Droop control Standard droop & AC 

voltage magnitude 

Standard droop & reactive 

power 
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Example Simulation Results – MMC disconnection 

Centralised DC slack bus Margin Control Droop control 
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Example Simulation Results – MMC1 AC fault 
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Thank you! 
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• Slide 1 – Picture courtesy of: Danish Energy Authority (left) CleanTechnica 

(right) 

• Slide 6 -  Picture courtesy of ABB 
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