

Detailed Modelling of MMC-HVDC Links

Antony Beddard

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

The University of Manchester

- Demand for VSC-HVDC systems is growing worldwide.
- Modular Multi-level Converters (MMC) is the VSC topology of choice.
- Focus is on the DC components

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

- Types of MMC
 - Half-bridge
 - Full-bridge
 - Alternate arm converter
- Selecting MMC Parameters
 - Number of voltage levels
 - SM capacitance
 - Arm reactance

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

- Type 1 Full physics based model
- Type 2 Full detailed model
- Type 3 Traditional detailed model (TDM)
- Type 3.5 Accelerated model (AM)
- Type 4 Detailed equivalent model (DEM)
- Type 5/6 Average value model (AVM)
- Type 7 Phasor domain model
- Type 8 Power flow model

MANCHESTER 1824

Comparison of TDM(3), AM(3.5) and DEM(4)

DC Fault						
Signal	DEM error (%)	AM error (%)				
l _d	0.41	2.29				
V _a	0.22	1.12				
l _{ua}	0.51	1.83				
V _c	0.07	0.07				

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

HVDC Cable Modelling

The University of Manchester

Types of HVDC Cable Model:-

- Lumped Parameter Model
- Bergeron Model
- Frequency Dependent Mode Model (FDMM)
- Frequency Dependent Phase Model (FDPM)

Layer	Material	Radial Thickness (mm)	Resistivity (Ω/m)	Relative Permittivity	Relative Permeability
Conductor	Stranded Copper	24.9	2.2x10 ^{-8*}	1	1
Conductor screen	Semi-conductive polymer	1	-	-	-
Insulation	XLPE	18	-	2.5	1
Insulator screen	Semi-conductive polymer	1	-	-	-
Sheath	Lead	3	2.2x10 ⁻⁷	1	1
Inner Jacket	Polyethylene	5	-	2.3	1
Armour	Steel	5	1.8x10 ⁻⁷	1	10
Outer cover	Polypropylene	4	-	1.5	1
Sea-return	Sea water/air	-	1	-	-

*Copper resistivity is typically given as 1.68*10⁻⁸Ω/m. It has been increased for the cable model in PSCAD due to the stranded nature of the cable which cannot be taken into account directly in PSCAD.

Comparison of Cable Models

- The choice of cable model can have a significant impact on the simulation results.
- Computational efficiency is approximately the same for the travelling wave models.
- The CEPIM was found to be the least computationally efficient model.
- FDPM is therefore the default model of choice for typical VSC-HVDC studies in this work.

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

Dynamic Braking System

- Typically employed for HVDC windfarm connections
- Normally located onshore
- Common models:
 - Voltage dependent current source
 - Power electronic switch with resistor
 - Control Two level switching, PWM etc.

- Required for large HVDC grids
- Hybrid DC breakers are currently the preferred topology
- Modelling options Cigre WG B4-57 technical brochure

- MMC Control
 - Modulation Nearest level control (NLC), selective harmonic elimination etc.
 - Capacitor balancing controller (CBC)
 - Circulating current suppressing controller (CCSC),
 - Outer controllers similar to traditional VSCs. i.e. not specific to valve topology

The University of Manchester

MTDC Control Strategies

Control Method	MMC1 control mode	MMC4 control mode	Comments
Centralised DC slack bus	DC voltage & AC voltage magnitude	Active power & reactive power	P*=500MW
Voltage margin control	DC voltage & AC voltage magnitude	Voltage margin & reactive power	Vd-High=620kV, Vd-Low=580kV
Droop control	Standard droop & AC voltage magnitude	Standard droop & reactive power	Droop gain =- 0.1

Example Simulation Results – MMC disconnection

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

Thank you!

Power Conversion Group School of Electrical and Electronic Engineering The University of Manchester, UK

(right)

References

Slide 1 – Picture courtesy of: Danish Energy Authority (left) CleanTechnica

The University of Manchester

٠

• Slide 6 - Picture courtesy of ABB