Use of steel for towers of wind turbines and support structures

Arno van Wingerde
Arno.van.wingerde@iwes.fraunhofer.de
Overview

- Background
- State of the Art
- Problems and possibilities
- Outlook
Wind Energy and other energy sources

2014 LCOE – Global ranges and baselines

- Conventional global
- Renewables global
- Wind global
- 2014 Baseline
- ‘Grid parity’

Source: MAKE Consulting

Note: Unsubsidized LCOE
Offshore Wind levelized Cost of Energy

Bubble Area represents capacity of wind farm

Source: DNV-GL
How about inshore, instead of offshore?

$v_{av., \, 50 \, m}$ Hamburg: 5 m/s
$v_{av., \, 50 \, m}$ near the coast: 6 m/s
$v_{av., \, 50 \, m}$ Munich: 4 m/s

$E_{wind} \sim v^3$

so $E_{Coast} = 2E_{Hamburg} = 4E_{München}$
Too little wind inshore?

Source: Fraunhofer IWES
Overview

- Background
- State of the Art
- Problems and possibilities
- Outlook
Costs of tower and support structures Onshore: 15%

Source: NREL
Costs of tower and support structures Offshore: 25%

- Balance of Station: 52%
- Turbine: 32%
- Soft Costs: 16%
- Assembly, Transport, & Install: 20%
- Electrical Infrastructure: 10%
- Port & Staging: 1%
- Support Structure: 18%
- Development: 2%
- Project Management: 1%
- Surety Bond: 8%
- Insurance: 3%
- Contingency: 3%
- Construction Finance: 3%

Source: NREL
State-of-the-art: towers of wind turbines

- Wind turbines: amongst the largest and highest loaded structures
- Due to growth of the industry and growth of installed capacity – repetition important
- Also: the industry is more driven by innovation than the construction industry
- Right now: S235, S355 are the main steel grades in use – as for the construction industry
Overview

- Background
- State of the Art
- Problems and possibilities
- Outlook
Arguments in favour of use of higher steel grades

- Static strength: increases linearly with f_y

- Buckling
 - Slenderness: $\lambda \approx l/D$ for thin-walled towers
 - For low slenderness, $\lambda \leq 50$ (e.g. 150 m high, 3 m ø), buckling strength increases almost linearly with the f_y
Arguments against use of higher steel grades

- Weldability: more care needed
- Toughness (earthquake resistance)
- Fatigue
 - With high SCF, no weld measures: virtually no influence of f_y
 - Lower SCF, post-weld treatment to introduce compressive stresses: almost linear increase with f_y achievable
- Price
- Lack of standards
Price

- Towers: dead weight no major cost post
- Transport and installation costs is a factor
- S235: 100%
- S355: 103%, practically a no-brainer
- S460: 110%, doable
- S690: 170%, hardly economical over S460, unless weight is a severe problem
Fatigue

Welding:

- Influence of the mean stress: typically unknown, a tensile mean stress equal to the yield stress has to be (conservatively) assumed, fatigue strength similar to lower grade steels, no benefit

- Unless this mean stress can be lessened or even be converted to a compressive stress, e.g. UIT (ultrasonic impact treatment)

- Other connection methods, such as grouting or pre-stressed bolts can also help to utilize the higher potential strength, e.g. Siemens tower.
Standards

- EC 3: focus on mild steels, with no “bonus” for higher steel grades
- No bonus for fatigue improvement of post weld treatments
- Based on a rather rigid and simplistic classification of structural details
- The class σ_c is the stress range at 2 million cycles, S-N lines have a slope of 1:3 until 5 million cycles (at 0.73 σ_c) and a fatigue limit at 0.40 σ_c
- Can be used as a first, conservative approach

- GL: sceptical about use of steels exceeding S460:
 “high strength steels having nominal yield strengths (or 0.2% proof stresses) exceeding 460 N/mm2 may be employed in exceptional cases only, with the corresponding technical justification and with GL consent

- Thus other standards need to be used (or developed!) in order to allow economical use of high strength steels for the fatigue loaded structures needed here
Overview

- Background
- State of the Art
- Problems and possibilities
- Outlook
The road ahead
Acknowledgements

Fraunhofer IWES is funded by the:

Federal State of Bremen

Senator für Umwelt, Bau, Verkehr und Europa
Senator für Wirtschaft und Häfen
Senatorin für Bildung und Wissenschaft
Bremerhavener Gesellschaft für Investitions-Förderung und Stadtentwicklung GmbH

Federal State of Lower Saxony

Federal Republic of Germany
Federal Ministry for Economic Affairs and Energy (BMWi)

with support of the European Regional Development Fund (ERDF)
RAVE Offshore Wind R&D

International Conference on R&D for Offshore Wind Energy in the North Sea

October 13-15, 2015
Bremerhaven, Germany

Call for abstracts coming soon!

Fraunhofer IWES
THANK YOU FOR YOUR ATTENTION

Any questions?
arno.van.wingerde@iwes.fraunhofer.de