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Analysis of loads for a floating TLP wind turbine 

 The project had two scopes: 

– Comparison of the results from three codes 

and with model scale 

– Analysis of the Concept 

 

 Glosten Associates kindly agreed to share the 

data on the TLP concept Pelastar. 

 

 Scope of the presentation is limited to the wind-

wave sensitivity investigation using HAWC2 

model 

 

http://www.eti.co.uk/project/floating-platform-system-demonstrator/ 
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Overview 

 TLP wind turbine numerical model 

 Model calibration 

 Test cases 

 Observations and Conclusions 

 Future work 

 References  

http://www.eti.co.uk/project/floating-platform-system-demonstrator/ 
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 The platform model is shown below: 

– 5 arms 

– Water depth of 54.7 m 

– Wave kinematics corresponding to the model tests 

– Hydrodynamic coefficients are calibrated based on 

   tank test results 

– Morison’s equation for 

   the hydrodynamic loads 

 Wind turbine model –  

   Tuned NREL 5-MW reference  

   wind turbine 

 

 

 

4 

TLP wind turbine numerical model 
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Model Calibration 

 Aero-elastic model for the TLP turbine is 

modelled using HAWC2 

 

 The aero-elastic model is calibrated using 

model test data 

 

 In order to match the ocean basin model, the 

wind turbine is tuned – such as additional 

mass and inertia has been included in the 

RNA, which might cause larger inertial loads. 

 

 For model test data validation, please refer to 

the reference paper OMAE2015-41874, Vita, 

et al. 
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Objectives of the Investigation 

 Motivation  

– Using onshore controller 

showed larger variations 

of pitch angle and loads 

at above rated wind 

speed. 

 

 Objectives 

To identify the influence of: 

– Wind 

– Waves 

– Inertia loads 

– Controller  
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Test cases 

 Case0  

– Wind+Waves 

 

 

 

 

 

 

 

 

– Large variation of pitch 

angle and tower bottom 

loads are observed 

beyond rated wind 

speed. 

 

 

 

 

 

 Case1  

– Wind alone 

 

 

 

 

 

 

 

 

– Influence of basic 

aerodynamics can be 

observed. 

 

 

 

 

 

    

 Case2  

– Waves alone 

 

 

 

 

 

 

 

 

– Influence of inertia loads 

can be observed. 

 

 

 

 

  

12 m/s 12 m/s 

Regular waves, H=8.16 m, T = 19s 
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Test cases 

 Case3  

– Wave-like wind 

– Steady wind speed of 12 

m/s +/- 4 m/s with a 

time period of 19 s. 

– No waves 

– Onshore controller 

 

– Influence of basic 

aerodynamics + 

aerodynamics due to 

onshore controller. But 

no inertia loads. 
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Results – Blade pitch angle comparison (Normalized) 

– Pitch angle is not 

very much affected 

between the wave-

like wind case and 

base case!!  
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Results – Floater surge comparison (Normalized) 

– In the case of 

wave-like wind, the 

SD is much lower 

than the base 

case..  
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Results – Tower bottom FA moment comparison (Normalized) 

– In the case of 

wave-like wind, the 

SD is much lower 

than the base 

case..  
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Mean TB Mx comparison 
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Wave-like wind simulation – Frequency sensitivity analysis 

 Description 

 

– In order to understand the wave-like wind frequency-dependency, the following 

cases are considered: 

 

Case A  No waves + wave-like wind with wave period of 19 s 

Case B No waves + wave-like wind with wave period of 10 s 

Case C No waves + wave-like wind with wave period of 5 s 
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Frequency sensitivity – Floater surge comparison (Normalized) 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Case A Case B Case C

M
ea

n
 f

lo
a

te
r 

su
rg

e 
[-

] 

Surge mean comparison 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Case A Case B Case C

F
lo

a
te

r 
su

rg
e 

S
D

 [
-]

 

Surge SD comparison 



DNV GL © 2014 14 

Frequency sensitivity – Tower bottom FA moment comparison 
(Normalized) 
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Observations / Conclusions 

 Model test-based tuned aero-elastic model of a TLP wind turbine is investigated 

for wind/wave sensitivity. 

 

 Investigations showed the following: 

 

– Larger surge motion together with high RNA inertia caused larger variation in 

loads – influence of inertial loads. 

 

– The tower bottom fatigue loads are dominated by the waves. 

 

– The wave-induced wind at the tower top influences the blade pitching and 

hence larger blade pitch angle variations.  
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Future work 

 

 The following aspects are planned for future work: 

 

– The conclusions are not indicative of the full scale real design, as the turbine is 

tuned to resemble the model test. Hence, the analysis will be repeated for the 

full scale real design. 

 

– Influence of the controller parameters will be investigated. 

 

– It seems that the system is sensitive to the wave frequency, which may be due 

to the time constants involved in the dynamic inflow calculations in the BEM. 

However, this needs further investigations.  
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