DC Voltage Control for Fault Management in HVDC Transmission System

Anastasios Oulis Rousis* & Dr Olimpo Anaya – Lara University of Strathclyde

- 1. Introduction Offshore wind energy: Promising renewable energy source.
- Challenges concerning integration and transmission system options.
- Different approaches can be found combining functionality, reliability and investment cost factors.
- **VSC HVDC** is considered to be the best available choice.

3. Wind energy development

5. Test network implemented in Matlab/Simulink

1.550W	
5km	• 5 offshore wind farms, 250MW each.
15km	Comprising of fully rated synchronous generators.
10km	• Wind farms dispersed in distances 0-20km from the
! ! 	converter station.
	HVDC link with line length 300km.

7. Simulation results (*High wind power penetration*)

2. Objectives

- ✓Modelling of VSC based point to point DC system for dynamic simulations analysis of HVDC networks.
- ✓New control approaches to facilitate Fault Ride Through.
- ✓ Research on DC voltage control, as it is considered decisive factor in increasing security of supply and reliability of transmission system.

Major Contribution

✓ Novel proposal of a DC voltage control strategy for fault management.

4. Main Components of an HVDC system

6. DC voltage control for fault management

8. Conclusions

Type of fault	Active power output (MW)	DC voltage (kV)		Response
		Control	Control	of the
		disabled	enabled	system
Normal operating conditions	1050	650	N/A	N/A
Single – phase to ground for 80msec	900 during the fault (control enabled).	810	780	Returns faster to initial value.
Single – phase to ground for 200msec	890 during the fault (control enabled).	950	840	Returns to initial value at half time.
Three – phase to ground for 80msec	900 during the fault (control enabled).	1150	1100	Faster return
Three – phase to ground for 200msec	890 during the fault (control enabled).	1560	1450	Same response

Benefits

- ✓Limitation of DC voltage increase.
- ✓Faster return to the initial condition after the fault is cleared.
- ✓ Stability is maintained in the system.

Three – phase to ground fault for 80msec

Three – phase to ground fault for 200msec