ECCO

Economic Aspects in the ECCOTool

Charles Eickhoff (Progressive Energy)

ECCO Conference Trondheim, 14 June 2011

Structure of Presentation

Purpose of economic analysis Economics in the ECCOTool Key design points Output KPIs

Strategic Purpose for Economics

The ECCOTool is designed to construct a CCS value chain tool primarily focusing on the

- Correct calculation of output time-series (flux, cashflows) and KPIs per actor (where correctness is defined w.r.t. the potential impact on decision-making)
- CCS investment decision support tool for technical / economic feasibility decision gate (not detailed engineering)
- ECCOTool is a single case study / scenario tool and not a tool that can integrate multi case studies / scenarios into a regional policy making study.
- ECCOTool will not be an expert system + workflow manager (some guidance on default input values is however given)

ECCOTool v2 should be a good starting point for possible further maintenance and development post-ECCO.

Module economics

- Modules support technical continuity and compatibility through the CCS chain
- From the physics and cost data they produce cash flows for Capex, Opex in Money Of the Day (MOD) levels ie nominal values
- Generally the cost data will be held at constant prices, so modules need to use escalation
- Escalation uses central routines to produce MOD values:

```
Value (MOD) = Value (base year) x <u>Index (current)</u>
Index (base year)
```

Linear interpolation is used as necessary from user-supplied price grid

Economic evaluation

- Many economic indicators require the production of a single figure rather than a time-series
- Generally these figures are evaluated using Discounted Cash Flow - by using a discount per year on the MOD values to reflect the increased worth of money appearing sooner
- DCF calculations use the following formula:

$$DCF_i = D_iC_i$$
 where $D_i = \frac{1}{(1+r_1)(1+r_2)\dots(1+r_i)} = \frac{1}{\prod_{n=1}^i (1+r_i)}$

DCF is used in the calculation of (inter alia):

- \notin t costs for CO₂ capture / transportation / storage
- IRR rate of return calculations for Actors

Economic evaluation

Other factors which affect the chain economics are:

- Contracts
 - €/t type contracts between actors in the CCS chain
 - Can be used to move reward in chain to match risk
 - Tax
 - Will have a significant effect on the net economics
 - Applied by actor and so ownership is relevant to outturn economics

Output KPIs

ECCOTool output parameters have been set in summary as follows:

Capture side	Unit	Transport side	Unit	EOR / Storage side	Unit
Electricity cost of production with capture	€/Mwh				
Electricity cost of production without capture	€/Mwh				
Opex & Capex per year	€M/a	Opex and Capex per year	M€/y	Opex and Capex per year	M€/y
Capture cost / tCO2 captured	€/tCO2	Cost of CO2 transported	€/km/tCO2	Cost of CO2 stored	€/tCO2
Capture cost / tCO2 avoided	€/tCO2 avoided		€/tCO2		
Total Cost of CO2 quotas avoided	€				
Total cost of quotas required if leakage	€	Total cost of quotas required if leakage	€	Total cost of quotas required if leakage	M€
Revenues from electricity	€/year			Oil revenues per year	M€/y
Contract payments per contract per year	€/contracts/y	Contract payments per contract per year	€/contract/y	Contract payments per contract per year	€/contract/year
Net Present Value	€M	Net Present Value	€	Net Present Value	€
Internal Rate of Return Real	%	Internal Rate of Return	€	Internal Rate of Return	€

Examples of usage:

€/t CO₂ down the whole chain can be used to compare project alternatives

€/t CO₂ avoided can be used to assess environmental CBA

Electricity costs with and without capture can inform political / regulatory strategy

Risk-reward imbalance and correction down chain can drive contract discussions

Risk – Reward balance down chain

Diagram shows natural risk / reward levels by key components

These can be modified by:

Risk – Reward balance down chain

Diagram shows natural risk / reward levels by key components

These can be modified by:

- Adding a transport contract
 - indemnifying leakage risk
 - Providing TOP CO₂ tariff

Risk – Reward balance down chain

- Diagram shows natural risk / reward levels by key components
- These can be modified by:
- Adding a transport contract
 - indemnifying leakage risk
 - Providing TOP CO₂ tariff
- Applying CCS support and a storage contract
 - Improves overall reward
 - Re-balances reward to players
- Equivalent effects could be achieved through ownership

Summary

- ECCOTool starts with continuity of CO₂ flow down the defined CCS chain and produces cash flows from this.
- These cash flows are then adjusted to take account of contracts, taxes, support arrangements etc.
- Discounted cash streams are output at the user-required granularity
- KPIs are derived as required based on module or actor or chain and can be user-refined
- These KPIs are designed to inform commercial, regulatory and political strategies

