Sensitivity of Hydrocarbon Recovery by CO₂ Injection to Production Constraints and Fluid Behavior

Barroux C.^a, Maurand N. ^a, Kubus P. ^b, Domitrović D. ^c

a: IFPEN, b: MOL, c: INA

1

Outline

Introduction

- Reservoir Conceptual Modeling for technoeconomic evaluation
- Illustration 1: CO₂ EOR, Ivanić field, Croatia
- Illustration 2: CO₂ EGR, 'Ursa' field, Hungary
- Conclusions

- Reservoir : actual pressure, injectivity

a large-scale problem, complex to solve

 \rightarrow reservoir/field **conceptual modeling** needed for each CO₂ EOR/EGR/storage target

Introduction

- Reservoir Conceptual Modeling
 - One hydrocarbon field = multiple injectors represented explicitly

→ reservoir/field **conceptual modeling** needed at a sector scale, well scheduling needed

 or one hydrocarbon field = one single « injection » point in the full CO₂ injection network

→ reservoir/field **conceptual modeling** needed at the field scale

Introduction

ECCO: North Sea & Central Europe

Context in Central Europe Targets = pre selected mature hydrocarbon fields

- → reduced geological uncertainty
- → what remains unknown: the impact of production constraints

Methodology for reservoir conceptual modeling

- Get full field CO₂ injection "experience" on pre selected fields actual / virtual (through full field simulation)
- Run a sensitivity study to production constraints using experimental design tool
- Simulation results: input data for <u>dimensionless</u> performance curves

Illustration 1: Ivanić CO₂ EOR case

Depth: 1609 m T: 98°C P: 184 bar Reservoir oil: Pb: 138 bar, 33.4 API

Simulation of production history (depletion + water flooding)

High well density

➔ wells interferences

Geology:

Presence of faults, pinch-out,

Croatia

Ivanić

Žutica

History has been matched

Test on fluid behavior (EOS): no CO₂ initially in reservoir oil

CO₂ Sources

Sensitivity analysis with experimental $^{\rm 8}$ design COUGAR^M

Use of 2 fluid models (EOS): low/high CO_2 dissolution (through CO_2 / Heavy binary interaction coefficients), history still matched

Illustration 1: CO₂ EOR in IVANIĆ field (injection pressure (BHP): 150 bar)

Impact of the CO₂ dissolution potential

Observed: larger the CO₂ dissolution, higher the oil recovery

As expected, more miscibility, more oil recovery

Illustration 1: CO₂ EOR in IVANIĆ

Observed: higher the pressure, lower the recovery

Explanation: BHP producer related to BHP injector, time is needed for reservoir repressurisation, recovery is delayed

10

Illustration 2: URSA CO₂ EGR case

Depth: 2800-3150 m GG: 0.81 T: 144°C P: 330 bar Pdp: 276 bar

Very mature field, Hungary

Illustration 2: URSA CO₂ EGR injection scenarios

Injectors: downdip, gravity stabilizing favorable mobility ratio (CO₂ more viscous) gas phase "fully" miscible displacement

Scenarios

- Inject CO₂ while reservoir blow-down then store CO₂ with reservoir re-pressurization
- Inject CO₂ while re-pressurize
- Various injection rates

Illustration 2: Ursa CO₂ EGR

Net gas cumulated prod. ,10⁹ Sm3

Cumulated stored CO₂,10⁶ tons

Final recovery sensitive to production constraints, and very different production profiles. Maximum EGR for scenario "inject then store" (pink line)

Illustration 2: Ursa CO₂ EGR

Dimensionless Curves

A dimensionless approach

which does not take into account the pressure management

(depletion, recompression before/during CO2 injection)

does not allow for putting all the results on a single set of dimensionless curves

Illustration 2: Ursa CO₂ EGR

Redimensioning dimensionless curves needs to have a scenario for pressure management

Conclusions

- Production constraints are found to have a large impact on hydrocarbon recovery by CO₂ injection
- Effects of thermodynamics
 - As expected, higher the solubility of CO₂ in the reservoir oil, higher the recovery.
 - CO₂ solubility, if not measured, is a source of uncertainty on EOR, quantifiable through a sensitivity to EOS binary interaction parameters
- For a given reservoir fluid and given geological parameters, increasing the pressure for increasing the miscibility is found to have a negative impact on oil recovery; the re-pressurization induces a delay in oil recovery:
 - Starting the CO₂ injection at the actual reservoir pressure of a depleted oil reservoir, the positive effect of the re-pressurization (increased miscibility) on the recovery has not been met during the 20 years of CO₂ injection.

Conclusions

- CO₂ EGR, even in the most favorable injection conditions for getting a stabilized front, is found to be highly sensitive to heterogeneity, injection rate and pressure management
 - Evidence of "Dietz like" instability,
- Dietz like" instability modeling: analytical Koval type model appears usable once the pressure effects deconvolved
- Reservoir conceptual modeling for techno-economic large scale project evaluation: reservoir conceptual modeling missing the impact of production constraints (pressure and rate) on the hydrocarbon recovery appears not to be usable for the gas or live oil reservoirs which have been studied

Thank you for your attention

The authors acknowledge the European Community, and all the ECCO partners, for permission to publish this paper. Particular thanks are addressed to MOL and INA for providing the reservoir data.

