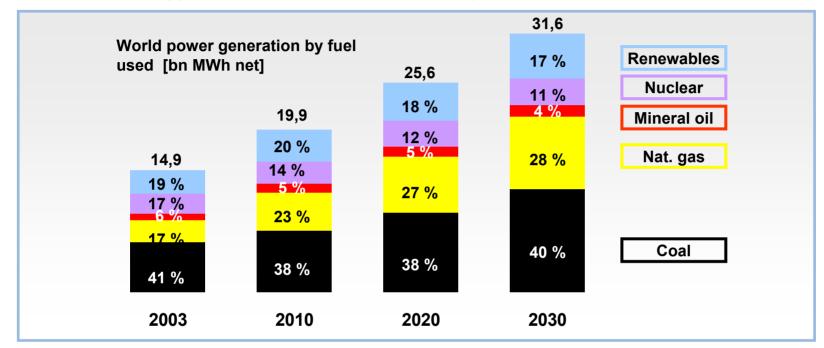

Future Power Generation Concepts: In which direction is Europe prone to go?

Case Study RWE Power

Werner Renzenbrink Synergies between HYPOGEN and the Hydrogen Economy Expert Workshop - Brussels, 18th January 2007

Power generation at RWE Power



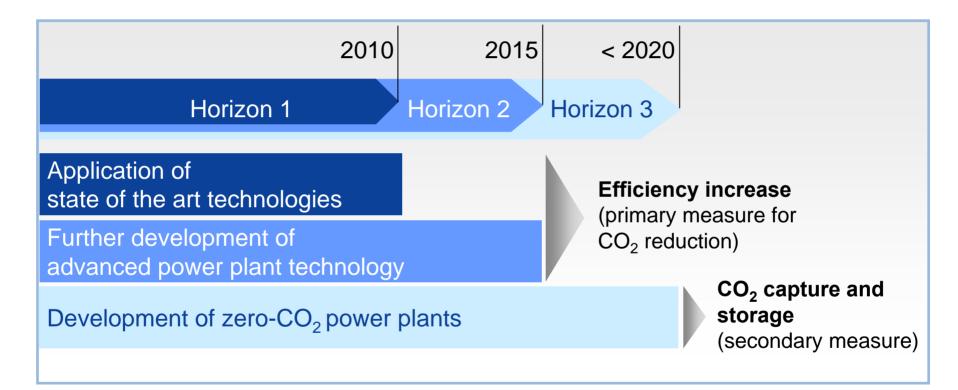
RWE is one of the leading power generating companies in Europe with a broad energy mix

Future perspectives of coal-based power generation

The energy source's indispensability

New requirements

Increasing fossil energy needs for power generation and the simultaneous demand for climate protection involve a strong conflict of goals.


CO₂ emissions have become an additional significant cost factor.

Conflict of goals can only be resolved by using lowor zero-CO₂ technologies!

Source: Department of Energy/Energy Information Administration, Washington 2006 (Reference case)

RWE Power's CO₂ reduction strategy in fossil-fired power generation

Horizon 1 example of lignite: RWE puts focus on state-of-the-art power plant technology

Niederaußem power plant		
Commercial operation	since 2003	
Capacity:	1,012 MW	
Efficiency:	> 43 % LHV	
Main steam:	275 bar/580 °C	
Reheater:	60 bar/600 °C	

Neurath power plant

Under construction, planned				
commercial operation:	2009/10			
Capacity:	2 x 1,100 MW			
Efficiency:	> 43 % LHV			
Main steam:	272 bar/600 °C			
Reheater:	55.5 bar/605 °C			

Horizon 1 example of hard coal: RWE puts focus on state-of-the-art power plant technology

Westfalen power plant
 Status: Procurement prepared
 Commercial Operation: 2011/12

Capacity:2 x 800 MWEfficiency:> 45 % LHV

Moreover, bids have been invited for four additional 800 MW units, two are located in the Netherlands and two in the Saar area (commercial operation: 2012).

Horizon 1 example of natural gas: RWE puts focus on state-of-the-art power plant technology

Lingen power plant Status: Procurement prepared Commercial Operation: 2009

Capacity: Efficiency: 876 MW > 59 % LHV

Altogether, RWE Power will spend some €11 billion on highly efficient technology in the generation field until 2012.

Horizon 2: RWE Power actively involved in further efficiency increase

2015

Dry lignite-fired power plant η: + 4% points

RWE project: WTA prototype

1:1 prototype of the drying plant connected to the new 1000 MW unit at Niederaußem

Developed by RWE BoA Niederaußem

- Groundbreaking in June 2006
- Budget: €50 mill.

700°C power plant (L + HC) η: + 4% points

2020

Joint **COMTES700** project of operator and supplier industry:

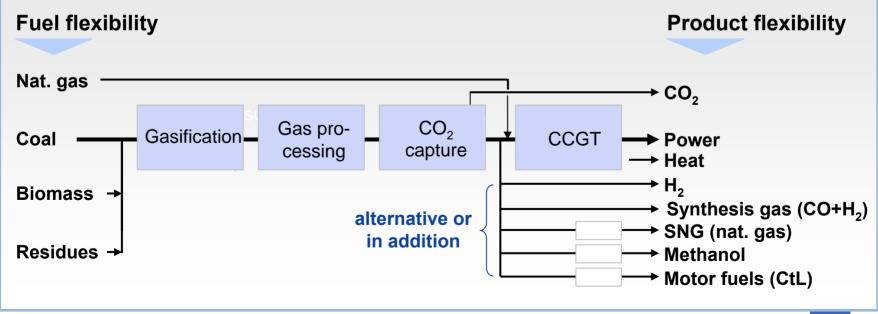
All components for 700°C tested in Scholven power plant

Red-hot main steam line

- Budget: €24 mill.
- Start of operation June 2005

The initiated measures will enable coal-fired power plants to pass the 50% efficiency threshold in the medium term.

RWE's decisions on CCS



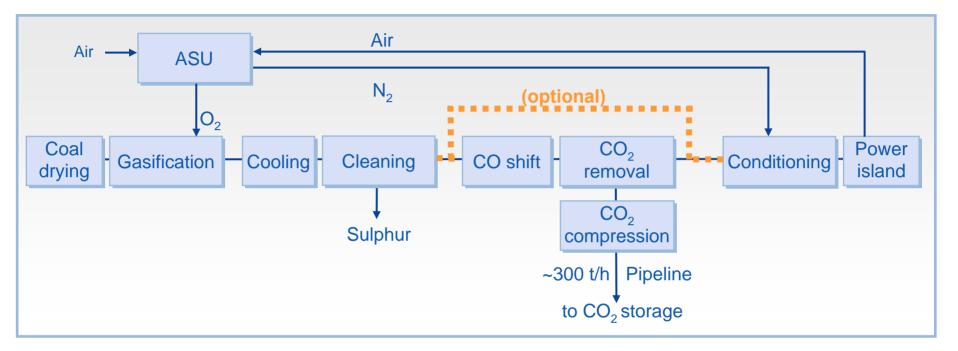
more future-proof.

IGCC offers favourable preconditions as zero-CO₂ power plant technology

- All process steps are commercially available
- Technical and economic statements are robust
- Power plant can also be operated efficiently without capture
- IGCC has reserves for further reducing classic emissions
- High fuel flexibility
- High product flexibility

The RWE project of a zero-CO₂ 450 MW power plant with CO₂ storage (IGCC-CCS)

El. capacity: 450 MW_{gross} 360 MW_{net}



- Net efficiency: 40%
- CO₂ storage: 2.3 mill. t/a
- CO₂ storage in depleted gas reservoir or saline aquifer
- Commissioning: 2014
- RWE budget: approx. €1 billion

In RWE Power, RWE has inhouse power plant and gasification know-how and, in RWE Dea, it has basic inhouse CO₂ storage know-how.

RWE's IGCC-CCS Project - Overall concept

Gasification technology options:

Entrained flow gasification	HTW fluidized bed
 Shell or Siemens Fuel Gasification (SFG, former Future Energy) allow the use of one technology for both hard coal and lignite 	 process represents well proven back-up option

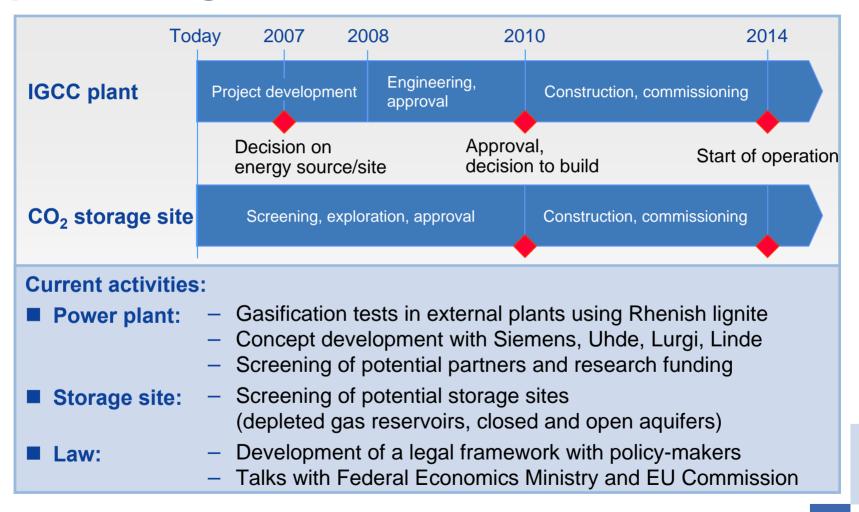
Development of CO₂ storage site Tasks and current status of work

- Phase 1: Selection of storage site (2006-2008)
 - Setting up the storage site portfolio
 - Analysing basic methods for evaluating storage potentials
 - Detailed feasibility study for 2-3 selected sites
- Phase 2: Evaluation of storage sites (2008-2010)
 - 3D seismics of potential storage sites
 - Exploration, drilling, formation tests
 - Selection of a storage site, application + approval
- Phase 3: Construction of storage facility (2011-2014)
 - Production drilling
 - Trial operation, if appropriate
 - Surface facilities, pipeline

CO₂ storage is the critical element of CCS success

Technical challenges

- No recognized methods for the identification and suitability evaluation of storage sites and, in particular, their long-term tightness.
- High uncertainty as regards costs and time needs due to geological imponderabilities.
- Injection of 2 mill. t CO₂/a would currently be the largest volume world-wide.


No legal bases for CO₂ storage

- Applicable rule of law is unclear and regulatory framework below the law level is lacking.
- Fundamental rules are open, e.g. right of access to storage site, liability issue.
- Consideration of CCS in the CO₂ regulatory framework required after 2012.

Public acceptance must be reached

The storage task will not be a simple one. But we think it can be tackled if all those involved cooperate!

Work on the zero-CO₂ coal-fired power Rwe

