DYNAMIS Introduction and interaction with ZEP and HFP – towards ZEP

CASTOR-ENCAP-CACHET-DYNAMIS Workshop 22-24 Jan. 2008 Nils A. Røkke – Co-ordinator - SINTEF

1

SINTEF

EU - DYNAMIS/HYPOGEN overall timeline & budget

- Phase 0 Feasibility Study by JRC (2004)
- Phase 1 Measures within FP6, DYNAMIS (2006-2008) 7.5 M€
- Phase 2 Pilot Scale Demonstrations (2008-2010)
 290 M€
- Phase 3 Demonstration Plant Construction (2008 2012) 800 M€
- Phase 4 Operation and validation (2012-2015)
 200 M€

SUM

~1300 M€

Ill. Statoil

Pic. Siemens

Overall Project Schedule

	Year 1	Year 2	Year 3
SP1: Project management and administration			
Lead project milestones	Project Launch	Mid-term review	Final workshop 🔶
SP2: Power plant & capture technology			Support to SP5
SP3: Product gas handling			Support to SP5
SP4:Storage of CO2			Support to SP5
SP5: Planning and pre-engineering of plants	Support/ limi	ted activity	
SP6: Societal anchorage of a HYPOGEN demo			

Criteria for selection (typical)

- Geographic aspects
 - Site specifics
 - Fuels availability
 - Power and heat sales
 - CO₂ conditioning and storage
 - Hydrogen demand
- Technical issues
 - Overall 90% CO₂ extraction, 400 MW_e and 0-50 MW H₂ export
 - Methane/Coal reforming/gasiifcation technology
 - Syngas Separation and Conditioning
 - GT's and train configuration(SIEMENS V94.2K, ALSTOM GT13E)
- Financial Issues
 - CAPEX, OPEX
 - Financial risk(Technical, Financial (loans and interest, bankability),EIB role)
- Political & Legal
 - Framework
 - Concensus and joint undertakings
 - Storage risk and acceptance

Critical criterion - CO₂ storage

Criteria list

- Depth > 800 m or P-init > 80 bar or Supercritical CO₂
- Total storage capacity > 60 Mt CO2
- Injectivity > 2.0 Mt CO₂ per year or permeability > 200 mD
- Integrity of seal in terms of thickness, faults etc.
- Location of site compared to Power/Hydrogen Market
- Geographical representation of sites
- Availability of geological data
- Availability of site by 2012
- Variety of geological conditions
- Variety of storage types

Power plant and capture technologies – cases studied

GT26, Post-C, SMR, Pre-C – integration GT13E2, ASU, ATR, Pre-C – integration GT13E2, ATR, Pre-C - integration

Shell gasifier Siemens/Future Energy gasifier GE/Texaco gasifier All cases: GT13E2, Selexol

TBD – in progress – 3 cases initially HTW gasifier included, instead of GE/Texaco

Technology selection

- Natural Gas with Pre-C capture
- Natural Gas with Post-C capture and NG reforming of H2
- Coal and/or lignite with Pre-C (ZE)IGCC
- Coal/lignite with parallell H₂ production and CO₂ capture (oxy-fu or Post-C) not pursued due to efficiency and thus cost issues

Decision of the EB Sept 07

- Using the DYNAMIS requirements of cost efficient production of H2, electricity and CO2 storage, 4 sites are recommended for further studies in the second phase of DYNAMIS:
- Mongstad, Norway, suggested by Statoil: Natural gas based plant with offshore CO₂ storage.
- Hamburg region, Germany, suggested by Vattenfall; Bituminous coal based plant with onshore or offshore CO₂ storage
- East Midlands, England, suggested by E.ON UK; Bituminous coal based plant with offshore CO₂ storage
- North East UK, suggested by PEL; Bituminous coal based plant with offshore CO₂ storage

These plants represent a reasonable spread of fuel types, storage types and location and hydrogen utilisation/export possibilities Hydrogen use and off-take as stated in the DYNAMIS mandate is hard to accomplish in most cases

Shortlist of plants- HYPOGEN

How does everything fit together?

Summary and conclusions

- 4 sites have been identified as candidate plants for the HYPOGEN initiative- these have all been proposed by an industrial partner.
- Further work will involve to further develop these cases with pre-engineering studies and preparatory measures (EIAS,..)
- Target is to have developed these cases to ready for project launch by the end of DYNAMIS, i.e. March 2009.
- Much is now dependent upon the industrial commitment and support of the specific sites.

Thank you for your attention

Screening results - traffic light method

- **GREEN** This should be used to represent a condition where the site is considered very close to optimal for purpose. For example if the site is of sufficient size to house the necessary plant components in an ideal layout then this criterion should be given a green, or if the storage location has sufficient capacity to store the CO_2 captured throughout the entire plant life safely then this criterion should be given a green weighting.
- AMBER This should be used to represent a hurdle which is not desirable, but one which could be overcome. For example a site plot which forces a site / plant layout which would not be considered ideal, or a compartmentalised storage location which may present additional engineering challenges.
- **RED** A red traffic light should be used to represent a negative factor which is considered financially or technologically prohibitive to overcome. For example, if a site was not of sufficient physical size to house the necessary plant equipment it would be deemed a red, or if the CO_2 compression requirement in order to utilise a particular storage location was so high as to compromise the project viability. The sites proposed as case studies for the DYNAMIS project should not have any critical criteria scored as red.

