CHARACTERIZATION OF RIPENING PROCESSES BY MASS-SPECTROMETRIC ANALYSES

Inga Marie Aasen SINTEF Materials and Chemistry

1

Motivation

Better

understanding

Better control of the drying-ripening processes

Reduced energy demand / reproducible product quality

- Changes of the drying conditions affect the product properties
- A tool is needed that can describe the effects of changed conditions on the ripening processes
 - Quantitative analyses of compounds (= "marker compounds") that are formed during the ripening process, by use of mass-spectrometry

Methods

High-resolution mass spectrometry

- LC-MS ESI QTOF
 - High mass-accuracy
 - Identification of compounds by use of databases
- Sample preparation
 - Freeze-dried, homogenized in in water, centrifuged and filtered
- Un-targeted ("fingerprint") mode:
 - Muscle metabolites
 - Small peptides
 - Free amino acids and amino acid degradation products
 - Other water-soluble compounds

Raw materials and strategies

Small scale laboratory experiments

- Small slices of meat, salted or pre-dried to different water activities (a_w), stored at constant conditions
- \rightarrow Reaction rates as a function of a_w and temperature

Samples from a production facility

- Long-time ripened ham (24 months production process)
- 4 (0) 10 (6) 16 (12) 22 (18) 24 (20) months processing (drying/ripening)
- New samples from the same hams after 3 and 6 months

Results Laboratory experiments

All compounds detected at more than one time-point in all three sample sets

Results Hams from production facility

Compounds present in at least 4 of 5 replicates at one time point

Identification of compounds changing with time

Small-scale experiments – Effect of temperature

Closed symbols: 25 °C Open symbols: 13°C

Identification of compounds changing with time

Small-scale experiments – Effect of salt

NaCl added: ▲: 0 ■: 4 % (a_w= 0.96) •: 8.5 % (a_w=0.92)

Identification of compounds changing with time Production samples

- "Most" happens before 10 months (6 months drying-ripening)
 => A wide range of marker compounds for this period
- For the later stages (>10 (6) months): Amino acid degradation products and some other metabolites

Identification of compounds changing with time Production samples

300000 –Val Ser 250000 Thr Asp 200000 Ala Pro Ala Abundance 150000 ------Cys Cys Lys ---- Gly Leu 100000 Ala Asp Cys ---Glu Arg Pro 50000 ---- Leu Phe Pro -E-Leu Leu Pro 0 15 20 5 10 25 0 Time [months]

Peptides:

Summary and conclusions

- The total "metabolomes" show a clear development with time both in laboratory tests and production samples
- Distinct differences between series with different water activity
- Identified the time course of:
 - Free amino acids (increasing the first 7-10 (3-6) months, minimal changes after 10 (6) months)
 - Di- and tripeptides
 (most have disappeared after 6 months, a few new are appearing)
 - Some other compounds (ao amino acid derivatives and degradation products)
- A high number of potential marker compounds for the first stages, fewer for the last period

On-going and future work

- A more thorough processing of the data sets to identify relevant compounds with lower abundance
- Select 8-10 potential marker compounds and verify the identity by MS/MS
- Ideally peptides where the identity of the source protein can be determined, but require MS/MS-analyses
- Use standards and QQQ-MS for quantitative analysis of the selected compounds and develop equations describing their formation rates as a function of a_w
- Verify in:
 - Laboratory scale drying experiments
 - Production samples

Future work

Integrate in mathematical models for the drying kinetics and simulate the effect of drying conditions on the ripening

People involved

SINTEF, Department of Bioprocess Technology:

- Kristin F. Degnes
- Hanne Haslene-Hox
- Kristin Reine
- Inga Marie Aasen
- NORTURA:
 - Per Berg
 - Anne-Mette Grønli

The work is supported by The Research Council of Norway and NORTURA SA

