We investigate numerical modeling and analysis of wind turbines with high-pressure hydraulic transmission machinery. A dynamic model of the hydraulic system is developed and coupled with the aeroelastic code HAWC2 through external Dynamic Link Library. The hydraulic transmission system consists of a hydraulic pump, transportation pipelines, a hydraulic motor, and check valves. By use of the Runge-Kutta-Fehlberg method with step size and error control, we solved the Ordinary Differential Equations of the hydraulic system with a time step smaller than the one used in the HAWC2 main program. Under constant and turbulent wind conditions, the performances of a land-based turbine during normal operation are presented.

Objectives

During the study, the research objectives are the following:
- To model the hydraulic transmission system by Ordinary Differential Equations
- To propose an approach for numerical simulation of hydraulic turbines

Results

Constant wind, Turbulence Intensity=0

- **Hydraulic pump pressure (bar)**
 - Constant wind, Turbulence Intensity=0
 - Generator power
 - Aerodynamic power

Uhub=8 m/s, Turbulent wind, Turbulence Intensity=0.23

- **Hydraulic pump pressure (bar)**
 - Generator power
 - Aerodynamic power
 - Rotor speed
 - Hub-height wind speed

Conclusions

- The presented numerical approach is robust and efficient
- The hydraulic wind turbine has decent performance under constant and turbulent wind conditions

Acknowledgment

The authors gratefully acknowledge the financial support from the European Commission through the 7th Framework Programme (MARINA Platform—Marine Renewable Integrated Application Platform, Grant Agreement 241402).

References

Refer to the paper for more.