Stochastic Particle Trajectories in the Wake of Large
Wind Farm

8 Geotysisk institutt M Bakhoday Paskyabl, A. Valingejad

Universitetet i Bergen Geophysical Institute, University of Bergen, Bergen, Norway

3

»Figure 4 shows the rising of pycnocline In

introduction

The main goal of this study is to investigate pollutant diffusions with carrier flow and their temporal-spatial the southern side of wind farm and

evolution in the wake regions of a large wind farm. The important feature of current study can be explained
by its ability to focus on non-linear interactions between farm, passive tracers, and surface gravity waves
by the means of the stochastic diffusion. Here, we specify a wind farm with a characteristic length, L, and
assuming an analytical 2D U-shaped wake profile based on educated knowledge of wind deficit behind
farm. For the numerical simulation, we modify 2D shallow water wave equations by including wave
breaking and wave-current interaction effects. With progressive wave energy evolution and stochastic
wave orbital motions, we solve Lagrangian equations of motions for pollutants. Then, we compare

the particle trajectories in the wind-generated symmetrical range-dependent dipoles to highlight the

corresponding falling due to geostrophic 2
adjustment on the northern side. Further,
Including wave effect modifies ocean
response by larger amplitude of
pycnocline height. S 0
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temporal-spatial tendency of passive tracers with and without wave forcing with those calculated by >He_re, we consider 5000 stochastic {02
vanishing farm contribution. Results also confirm the role of stochastic modeling of pollutants to capture Particles. P {0
more realistically the underlying physics by reducing the related uncertainties, especially during the strong 02
oceanic upwelling and downwelling that influence marine life strongly, by bringing colder, nutrient rich P 04
water to the surface zone that there is enough light to provide appropriate conditions for growing and 0 2 4 6 0 2 4 6
reproduction of phytoplankton. ol - o

Figures 5 and 6 shows the linear FVV runs, non-linear finite difference runs in the presence

! of bottom friction and advection term, and ROMS model results [3].
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characteristics, and by ignoring bottom friction and wave-induced momentum redistribution term F. ! — o
we can obtain another simplified expression. |
>Finite Volume Technique
The conservation form of Eq. (1) can be written as ~where source term Is given as . .
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>1n this study for constant wind and wave the following analytical expression is proposed [1,3]: Fg.8 : - | . -
A=A. . —AA P(X Y) trajectories have been shown in Fig. 8. These Figures show that wind farm modify
_ _ _ mt | _ o _ the tracers trajectories, especially at the center of diploes.
in which X and Y show the horizontal axes, A is wind-wave forcing vector, AA. is wind-wave forcing
fluctuation, and P gives the distribution of forcing behind wind farm. Wind and wave forcing are
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_ i | [ " e Growing the offshore wind industry necessitates investigations of different aspects of interaction between
= P large wind farms and atmosphere, as well as ocean. Regarding to the later, upper ocean reveals direct but
o - = slow response to the wake strength and vertical extent of wind profile behind farm. All kind of variations
ol | o | I In the atmospheric forcing conditions influence the wake pattern and structure downstream of wind farm
L - > 3 r - 8 and increase complexity of studying interaction between upper ocean and large farm. Among different
x/L raral | Issues of interest about this interaction, environmental effects of wind farm getting more important as a
= result of continual technological advances in design, installation, maintenance, and transport of energy
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