

Influence of pitch motion on the wake of floating wind turbine models

S. Rockel^{*1}, J. Peinke¹, R. B. Cal² and M. Hölling¹

¹ForWind, Institute of Physics - University of Oldenburg ²Dept. of Mechanical and Materials Engineering, Portland State University

*contact: stanislav.rockel@uni-oldenburg.de

 $\overline{\mathbf{W}}$ tripods and monopiles feasible in shallow water

Tripods and monopiles feasible in shallow water

Tripods and monopiles feasible in shallow water

√ floating platforms are a solution for offshore wind energy in deep water [Henderson, 2009]

Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 (Jonkman, 2009; Sebastian, 2012)

Tripods and monopiles feasible in shallow water

√ floating platforms are a solution for offshore wind energy in deep water [Henderson, 2009]

The second secon

W tripods and monopiles feasible in shallow water

√ floating platforms are a solution for offshore wind energy in deep water [Henderson, 2009]

The second secon

Experimental investigation of wake development

Inderstand the differences between a fixed turbine and a floating turbine

- understand the differences between a fixed turbine and a floating turbine
- wind tunnel experiments with model wind turbines using stereo particle image velocimetry (SPIV)

- understand the differences between a fixed turbine and a floating turbine
- wind tunnel experiments with model wind turbines using stereo particle image velocimetry (SPIV)
 - **v** simplification of floating turbine:
 - 1D streamwise oscillation (pitch motion)

- understand the differences between a fixed turbine and a floating turbine
- wind tunnel experiments with model wind turbines using stereo particle image velocimetry (SPIV)
 - vision of floating turbine:
 - 1D streamwise oscillation (pitch motion)
- comparison of inflow and wake development
 near wakes of up- and downstream turbines

S. Rockel

ForWind Energy Research

- SPIV: optical flow measurements 2D-3C V
- planes: center of tower V
- fixed case data @1Hz V

universität oldenburg

versität oldenburg

Inflow setup

S. Rockel

Inflow: averaged vertical component <V/U_{hh}>

Inflow: averaged vertical component <V/U_{hh}>

Inflow: averaged vertical component <V/U_{hh}>

Inflow: averaged turbulence intensity $< \sigma_U/U_{hh} >$

Inflow: averaged turbulence intensity $< \sigma_U/U_{hh} >$

Inflow: averaged turbulence intensity $< \sigma_U/U_{hh} >$

S. Rockel

ForWind **W**

Wake of turbine 1

Averaged streamwise velocity <U/U_{hh}>

S. Rockel

Averaged streamwise velocity <U/U_{hh}>

Averaged streamwise velocity <U/U_{hh}>

Averaged vertical velocity <V/U_{hh}>

Averaged vertical velocity <V/U_{hh}>

Averaged vertical velocity <V/U_{hh}>

Averaged turbulence intensity $< \sigma_U/U_{hh} >$

S. Rockel

Averaged turbulence intensity $< \sigma_U/U_{hh} >$

Setup: two turbines

wind tunnel at Portland State Univ.

S. Rockel

Setup: two turbines

wind tunnel at Portland State Univ.

S. Rockel

Inflow profiles $\langle U/U_{hh} \rangle$ at 0.5D upstream

Inflow profiles $\langle U/U_{hh} \rangle$ at 0.5D upstream

Turbulence intensity profiles $< \sigma_U/U_{hh} >$ at 0.5D upstream

Turbulence intensity profiles $< \sigma_U/U_{hh} >$ at 0.5D upstream

Near wake profiles $\langle U/U_{hh} \rangle$ at 1D downstream

Near wake profiles $\langle U/U_{hh} \rangle$ at 1D downstream

Summary & Conclusions

W Blockage changes inflow profile

Pitch motion has strong impact on wake
 Vertical trend in all quantities
 Increased vertical flow

W Reduced turbulence intensity in far wake

Changed inflow profile for downstream turbine has no influence on near wake

Thank you!

Questions?

Acknowledgements:

- Elizabeth Camp
- German Environmental Foundation

"Experimental study on influence of pitch motion on the wake of a floating wind turbine model", Rockel et al., *Energies, submitted 2013*

spanwise velocity

Near wake profiles $\langle V/U_{hh} \rangle$ at 1D downstream

Near wake turbulence intensity $\langle \sigma_U/U_{hh} \rangle$ at 1D downstream

Comparison with wake models: fixed

\overline{V} shape and magnitude of deficit predicted for X = 3D and 4.5D

Comparison with wake models: floating

▼ vertical displacement NOT captured

S. Rockel

