

Benchmarking of Lillgrund offshore wind farm scale wake models

Support by

Outline

- Motivation;
- Participants;
- Wind farm location, layout and challenges;
- Wake models;
- Benchmark flow cases;
- Results;
- Conclusion;
- Acknowledgement.

Motivation

- The wake modeling part of the EERA DTOC (Design Tool for Offshore wind farm Clusters) project is to improve the fundamental understanding of wind turbine wakes and modeling.
- Many different types of wind farm wake models that have been developed during the last three decades.
- Two benchmark campaigns have been organized on the existing wind farm wake models available within the project.
- First benchmark deals with regular 8 x 10 turbines layout and medium internal spacing (7 – 10 D);
- The present benchmark represents an irregular layout of 8 wind turbines - with small internal spacing (3.3 – 4.3 - 7 D).

Participants

- E. Maguire, Vattenfall AB;
- P.-E. Rethoré, DTU Wind Energy;
- S. Ott, DTU Wind Energy;
- T.Göçmen, DTU Wind Energy;
- A. Penã, DTU Wind Energy;
- J.Prospathopoulos, CRES, Greece;
- G.Scheepers, ECN, The Netherlands;
- T. Young, RES-LTD, United Kingdom;
- J.Rodrigo, CENER, Spain.

Benchmark test case: Lillgrund offshore wind farm

Site Description:

- The Lillgrund offshore wind farm is located in Öresund, the body of water between Malmö, Sweden and Copenhagen, Denmark.
- Owner: Vattenfall AB 100%
- The farm consists of 48 Siemens SWT-2.3-93 wind turbines, each producing a rated power of 2.3 MW with a rotor diameter of 93 m and a hub height of 65 m.
- The turbines are arranged in a dense array with separation of 3.3 rotor diameters (D) within a row and 4.3 D between the rows.

Lillgrund offshore wind farm, located Between Sweden & Denmark

Location of Lillgrund offshore wind farm.

EERA-DTOC Benchmarking wake models

Layout of the Lillgrund offshore wind farm (Dahlberg, 2009).

8 Rows of turbines: NE => SW

8 Columns of turbines: SE => NW EERA-DTOC Benchmarking wake models EE

EERA-DTOC Benchmarking wake models EERA DeepWind'2014 Trondheim, 22 - 24 January 2014

Lillgrund; Available measurements.

- 65 m mast (wind speed, turbulence, wind direction, air temperature), period: 2003 – 2006 (before WF installation, with high quality)
- 65 m mast (wind speed, turbulence, wind direction, air temperature) with medium quality, period: 2008 2010.
- SCADA data from WF as 10 minute statistics (mean values and stdev from each wind turbine). Period 2008 2012. Signals: power, pitch, rpm, nacelle wind speed and position.

Wind Farm wake models used in the benchmark

- 1. SCADA is the processed wind farm data to be compared with the wind farm wake models;
- 2. FUGA is a linearized actuator disc eddy-viscosity CFD model for offshore wind farm wake developed by DTU;
- 3. CRESflowNS is an elliptic k-ε actuator disc CFD model tailored for offshore wake simulation developed by CRES;
- **4. FarmFlow** is a parabolized k-ɛ actuator disc CFD model tailored for offshore wake simulation developed by ECN;
- **5. GCL** is the G.C. Larsen eddy-viscosity wake model v2009 developed by DTU;
- **6. NOJ** is the original N.O Jensen model;
- 7. AD/Ainslie is an eddy-viscosity wake model developed by RES-LTD.

Power deficit along a row of turbines - 3.3D & 4.3 D spacing at 9 m/s;

Power deficit along a row of turbines - 3.3D & 4.3 D spacing – with "missing" wind turbines at 9 m/s;

1. Maximum power deficit – as function of turbulence intensity (TI) for a pair of turbines with 3.3D & 4.3 D spacing respectively;

Park efficiency for 0 – 360° inflow at 9 m/s & Δ =3°.

Inflow conditions:

- -Wind direction (derived)
- -Wind speed (derived)

Benchmark matrix

EERA-DTOC		Complete rows		Missing turbine(s)		Turbulence		Park
Institution/model		Row:3-120deg	Row:B-222deg	Row:5-120deg	Row:D-222deg	TI-3.3D	TI-4.3D	Efficiency
DTU	FUGA	1	1	1	1	1	1	1
CRES	CRESflowNS	1	1	1	1			
ECN	FarmFlow	1	1	1	1	1	1	1
DTU	GCJ-BinAve	1	1	1	1	1	1	1
DTU	GCJ-GauUnc	1	1	1	1	1	1	1
DTU	NOJ-BinAve	1	1	1	1			1
DTU	NOJ-GauUnc	1	1	1	1			1
DTU	NOJ(Penã)	1	1	1	1	1	1	1
RES-LTD	AD/Ainslie	1	1	1	1	1	1	1
CENER	GCJ-GauUnc	1	1	1	1	1	1	1
sum		10	10	10	10	7	7	9

63 simulation results have been provided from the 10 participants.

Basic definitions

Maximum deficit

1 Flow case, 3.3 D spacing

1 Flow case, 3.3 D spacing

2 Flow case, 3.3 D spacing with "missing turbines"

3 Flow case – turbulence dependence

4 Flow case – park efficiency

Conclusion

- Good agreement between wake model results and measurements;
- All models were able to predict the increased deficit between closely spaced turbines;
- The speed recovery was well reproduced;
- Linear relation between deficit and turbulence was well reproduced;
- Park power deficit for 0 360° inflow was well reproduced within 4-5% at 9 m/s;

Acknowledments

This work was supported by the EU EERA-DTOC project nr. FP7-ENERGY-2011/n 282797.

We acknowledge Vattenfall AB for having access to the SCADA data from the Lillgrund offshore wind farm.

Thank you for your attention