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from steep and breaking waves
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Hydrodynamic loads
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Simplest: Linear wave kinematics and Morison equation

dU
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Morison-type force model

Advanced: CFD and coupled CFD
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Task A: - Task C:

Boundary conditions for Aero-elastic response
phase resolving wave to fully nonlinear wave
models forcing
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Excitation of natural frequency by
What is ringing? higher-harmonic forcing from
nonlinear waves
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Third-order inertia load theories:

FNV (1995): regular waves deep water
DTU Wind Energy a .
Department of Wind Energy DHI Krokstad et al (1998): irregular waves

Malenica & Molin (1995): finite depth
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What is impulsive excitation? =

Sudden excitation of natural
frequency by large and rapid
force. Steep and breaking

waVves.
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Study of nonlinear wave load effects

Response calculations with Flex5 aero-elastic model, NREL 5MW turbine
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Kinematics from a fully nonlinear potential flow solver =2

‘OceanWave3D’, Engsig-Karup et al (2009)

Wind
Allan Engsig-Karup, Harry Bingham and Ole Lindberg —>

S ,‘, Wind furbine

:

9,0+ Vh-V¢=0
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From kinematics to distributed force

10/' Force model (Rainey 1989, 1995)
° Feurface = _%pwﬂffmnx(u _)i')2
5 f(raz):pw&fcm(ﬂ_i)_{'
= + pwAi+ pw cpw (u—X)
N 150 —|—%pchD(u—X)|u—X|
25 Suited for fully nonlinear kinematics

180 190 200 210 220 230
x[m],u[m/s]
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Response in bottom of tower

Fully nonlinear waves versus linear waves
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Static load analysis, h=30m
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Results of aero-elastic computations
Tower resnonse - laraest sea state
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Figure 44: Nonlinear and linear surface elevation for the largest sea state and the corresponding
moment in the bottom of the tower, H; = 6.76m, T, = 11.41s,V = 28m/s and I, = 0.13

Linear waves can also excite the tower
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Results of aero-elastic computations

HE

Monopile response - largest sea state
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Figure 45: Nonlinear and linear surface elevation for the largest sea state and the corresponding
moment in the bottom of the monopile, H; = 6.76m, T,, = 11.41s,

V =28m/sand [, = 0.13

Vibrations less visible - occur on_top of the wave loads

DTU Wind Energy
Department of Wind Energy

DHI

DTU Mechanical Engineering
Department of Mechanical Engineering




Quantify fatigue effect

Equivalent load
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{a) Tower.

Tower effect occur at 25m - wave nonlinearity is stronger for smaller depth

Monopile effect is largest at 40m, where it gives 4% larger equivalent loads.

DTU Wind Energy
Department of Wind Energy D H I

.05

0.95}-

0.9

Accumulated equivalent load
1

. T m
Legace = ZLEL?J T
J

40m 35m 30m 25m
(b) Monopile.

DTU Mechanical Enginee'rmg

Department of Mechanical Engineering




Quantify fatigue effect

Equivalent load Accumulated equivalent load
1
1 =

r\ m m B P .
Leq — ZL Leq.acc — ZLEQJ T
Conclusion of present study:

Wave nonlinearity not critical for equivalent fatigue loads.

But 4% in equivalent load corresponds to 18% in fatigue damage

More investigations with more sea states included needed

Inclusion of diffraction needed

Nonlinearity seems more important for ULS than for FLS
Hence ULS study is needed

Tower effect occur at 25m - wave nonlinearity is stronger for smaller depth

Monopile effect is largest at 40m, where it gives 4% larger equivalent loads.

DTU Mechanical Engineering

DTU Wind Energy A‘\

i



=
—
=

The Wave Loads project
ForskEL. DTU Wind Energy, DTU Mech. Engn

i

Y

Task A: - Task C:

Boundary conditions for Aero-elastic response
phase resolving wave to fully nonlinear wave
models forcing

DHI

tis]

DTU Wind Energy DTU Mechanical Engineering
Department of Wind Energy DH I

Department of Mechanical Engineering




The OpenFOAM® CFD solver ==

Open source CFD toolbox
Vast attention during last 3 years

This study: interFoam solver
3D incompressible Navier-Stokes
two phases (water and air)
VOF treatment of free surface

Waves2foam wave generation toolbox has been
developed and validated

(Niels Gjgl Jacobsen
PhD thesis 2011; Paper in Int. J. Num. Meth. Fluids)
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Development of a coupled solver

wavesZFoam

OpenFOAM
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OceanWave3D

Compute outer flow field with potential flow wave model:
OceanWave3D (Engsig-Karup et al 2009)

Compute inner field with wave-structure interaction with CFD-VOF model

Coupling zone
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Slender body enables one-way coupling
(transfer)
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Incident waves enforced in relaxation zone

Diffracted waves damped in relaxation zone = y4umget + (1 = X) Yeom: ¢ € {ug,w,a},
D: cylinder diameter

|: distance to relaxation zone

kA=0.2; kR=0.1; kh=1 Distance can be as small as L/6
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Validation for irregular wave forcing on a slope

Experiment in the Wave Loads project. Hs=8.3m (full scale). Scale 1:36
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Validation for irregular wave forcing on a slope
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Experiment in the Wave Loads project. Hs=8.3m (full scale). Scale 1:36
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Validation for irregular wave forcing on a slope
Free surface elevation 0.25 cm in front of cylinder
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Computation of multi-
directional waves
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Figure 3.27: Snapshot of the free surface elevation computed by the potential flow
solver at time ¢ = 15 5.

Figure 3.28: Snapshot of the free surface elevation computed by the Navier-
Stokes solver at time ¢ = 15 s.

Elevatica;  [m]

=
—
=

i

'ering



=18m

w

Computation of multi-

directional waves
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Detailed study on uni-
wave group impacts

(c) Unidirectional: The wave passage

Bo Terp Paulsen

and bi-directional

(d) Bi-directional: The wave passage
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Detailed study of regular wave forcing
and higher-harmonic components
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Task A: - Task C:

Boundary conditions for Aero-elastic response
phase resolving wave to fully nonlinear wave
models forcing
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Physical model test with a flexible cylinder at DHI DTU

A=
Bredmose et al OMAE 2013 -
Inspiration from de Ridder et al OMAE 2011 Target values

from NREL 5MW

Pipe properties reference WT

Lab scale (1:80) Prototype scale

Dguter 7.5 cm @

Wall thickness |J1.8 mm 0.144 m
EI (estimated) |]1026 Nm? 4.20-10' Nm?
€ (estimated) |[§0.017 0.017
Density 0.64 ko/m 4.20-10°kg/m
= height 200 cm 160 m
Ining to get m 1.786 kg 937-10°kg
éfd >nd scaled™ 1.784 kg 936.10%kg
. h 160.75 cm 128.6 m
gequencies 108.75 cm 87.0 m

fi 2.5 Hz
; s IS

fi 50 Hz 5.6 Hz

TABLE 1. Data for flexible pipe. Prototype values are indicated just

DTU Wind Energy ~
Department of Wind Energy DH
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. DTU
Instrumentation >

A d

displacement

transducer

accelerometers ‘

Wave gauges!
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Example of measurement

h=40.8m; Hs=8.3m; Tp=12.6s
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Which waves give the largest accelerations?

100:‘

H/L0

Goda (2010) breaking criterion

HE

%5 acceleration

%45 in top

04 accelerometer
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See also Hansen et al
(OMAE 2012)
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Hi=11lm

H;,=83m

Which waves aive the laraest accelerations?

h=20.8m
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Numerical reproduction of experiments

HE

Linear wave detection FEM model
Nonlinear |\waye transformation
OceanWave3D (Engsig-Karup et al 2009)
| Force model (Rainey 1989, 1995)
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I L f(raz):pw&fcm(ﬂ_i)‘f
+ pwAi+ pw cpw (u—X)
5, . )
Vof + 0z =0 - —I—%PWCDD(H—XHH—Xl
__...--~___,...--" d,0+Vh-V¢ =0
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Response, h=20.8 m
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Task A: - Task C:

Boundary conditions for Aero-elastic response
phase resolving wave to fully nonlinear wave
models forcing
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