A preliminary comparison on the dynamics of a VAW T on three different support structures 23<sup>rd</sup> January, 2014



Michael Borg







## Outline

- Context
- Floating Wind Turbines studied
- Degrees of Freedom
- Loading Conditions
- Results
- Conclusions



#### Context

Identifying optimal floating wind configurations





#### Context

Identifying optimal floating wind configurations





#### Context



## **Hoating Wind Turbines**





6



#### Numerical Tool

7

#### • FloVAWT in development at Cranfield University





- Aerodynamic forces excitation of platform
- HAWT: relatively steady thrust + torque in roll
- VAWT: oscillatory surge, sway, roll, pitch, yaw loads



- Spar
  - Mooring system yaw stiffness
    - Not sufficient  $\rightarrow$  Yaw DOF disabled







#### • TLP

#### Mooring system surge/sway stiffness







- Semi-submersible
  - No problems!



#### Cranfield UNIVERSITY





#### Load Cases 3 & 4

| Load Case | Wind Speed (m/s) | Hs (m)/Tp (s), LC4 |
|-----------|------------------|--------------------|
| x.1       | 5 (BR)           | 2.1/9.74           |
| x.2       | 9 (BR)           | 2.88/9.98          |
| x.3       | 14 (R)           | 3.62/10.29         |
| x.4       | 18 (AR)          | 5.32/11.06         |
| x.5       | 25 (AR)          | 6.02/11.38         |

# Results W ind O nly





### Results W ind Only





# Results Met-ocean





#### Results W ind Only vs. Met-ocean





#### **Results** W ind Only vs. Met-ocean







#### Conclusions

- Three floating VAWT configurations
- Differences in mooring systems required HAWT vs. VAWT
- Wind-only & met-ocean responses

## **FUTURE WORK**

- Frequency response analyses
- More expansive load cases
- Use DeepWind optimised design



#### Thank you for attention

Questions?



#### References

- [1] Vita, L. (2011), Offshore floating vertical axis wind turbines with rotating platform (Ph.D. thesis), Technical University of Denmark, Roskilde, Denmark.
- [2] Jonkman, J. and Musial, W. (2010), Offshore Code Comparison (OC3) for IEA Task 23 Offshore Wind Technology and Deployment, NREL/TP-5000-48191, NREL, Colorado
- [3] Robertson, A., Jonkman, J., Musial, W., Vorpahl, F. and Popko, W. (2013), "Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System", *EWEA Offshore 2013, 19-21 November, 2013, Frankfurt, Germany.*
- [4] Stewart, G. M., Lackner, M., Robertson, A., Jonkman, J. and Goupee, A. J. (2012), "Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform", 22nd International Offshore and Polar Engineering Conference, 17-22 June, 2012, Rhodes, Greece, ISOPE
- [5] Collu, M., Borg, M., Shires, A., Rizzo, N. F. and Lupi, E. (2014), "Further progresses on the development of a coupled model of dynamics for floating offshore VAWTs", ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, 8-13 June 2014, San Francisco, USA.
- [6] Fossen, T. I. and Perez, T. , MSS. Marine Systems Simulator (2010), available at: http://www.marinecontrol.org



## VAW T Definition

| Rotor height, root-to-root (m)                 | 129.56   |
|------------------------------------------------|----------|
| Rotor radius (m)                               | 63.74    |
| Chord (m)                                      | 7.45     |
| Airfoil section                                | NACA0018 |
| Total mass, including tower and generator (kg) | 844226   |
| Centre of gravity, from tower base (m)         | 67.4     |
| Rated power (MW)                               | 5.0      |
| Rated wind speed at 79.78m above MSL (m/s)     | 14       |
| Rated rotational speed (rpm)                   | 5.26     |





## FOW T Definitions

|                                        | Spar   | Semi-sub | TLP    |
|----------------------------------------|--------|----------|--------|
| Draft, from keel (m)                   | 120    | 20       | 30     |
| Mass (tonnes)                          | 8125.2 | 14108    | 1505.8 |
| Centre of Gravity (CG), from keel (m)  | 45.37  | 11.07    | 64.1   |
| Radius of gyration about CG, roll (m)  | 30.11  | 30.59    | 66.88  |
| Radius of gyration about CG, pitch (m) | 29.01  | 29.97    | 64.13  |
| Radius of gyration about CG, yaw (m)   | 8.83   | 29.91    | 19.85  |



|       |       | Initial conditions |          |         | Simulation Length (s) |          |     | Time star (a) |
|-------|-------|--------------------|----------|---------|-----------------------|----------|-----|---------------|
|       |       | Spar               | Semi-sub | TLP     | Spar                  | Semi-sub | TLP | Time step (s) |
| LC1.1 | Surge | +12m               | +12m     | N/A     | 1200                  | 1200     | N/A | 0.1           |
| LC1.2 | Heave | +6m                | +6m      | +0.35m  | 150                   | 150      | 50  | 0.1           |
| LC1.3 | Pitch | +5deg              | +8deg    | +0.5deg | 300                   | 300      | 50  | 0.1           |
| LC1.4 | Yaw   | N/A                | +8deg    | +15deg  | N/A                   | 900      | 200 | 0.1           |

|       | No.of wave components | Length (s) | Time step (s) |
|-------|-----------------------|------------|---------------|
| LC2.1 | 800                   | 3600       | 0.1           |



|       | Wind Condition | U <sub>ref</sub> (m/s) | Simulation Length (s) | Time step (s) |
|-------|----------------|------------------------|-----------------------|---------------|
| LC3.1 | Cut-in         | 5                      | 1800                  | 0.1           |
| LC3.2 | Below-rated    | 9                      | 1800                  | 0.1           |
| LC3.3 | Rated          | 14                     | 1800                  | 0.1           |
| LC3.4 | Above-rated    | 18                     | 1800                  | 0.1           |
| LC3.5 | Cut-off        | 25                     | 1800                  | 0.1           |



| U <sub>ref</sub> (m/s) | H <sub>s</sub> (m)                                 | $T_{p}(s)$                                           | Simulation Length (s)                                                                 | Time step (s)                                                                                                                  |
|------------------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 5                      | 2.1                                                | 9.74                                                 | 3600                                                                                  | 0.1                                                                                                                            |
| 9                      | 2.88                                               | 9.98                                                 | 3600                                                                                  | 0.1                                                                                                                            |
| 14                     | 3.62                                               | 10.29                                                | 3600                                                                                  | 0.1                                                                                                                            |
| 18                     | 5.32                                               | 11.06                                                | 3600                                                                                  | 0.1                                                                                                                            |
| 25                     | 6.02                                               | 11.38                                                | 3600                                                                                  | 0.1                                                                                                                            |
|                        | U <sub>ref</sub> (m/s)<br>5<br>9<br>14<br>18<br>25 | $U_{ref}$ (m/s) $H_s$ (m)52.192.88143.62185.32256.02 | $U_{ref}$ (m/s) $H_s$ (m) $T_p$ (s)52.19.7492.889.98143.6210.29185.3211.06256.0211.38 | $U_{ref}$ (m/s) $H_s$ (m) $T_p$ (s)Simulation Length (s)52.19.74360092.889.983600143.6210.293600185.3211.063600256.0211.383600 |

# Natural Periods/ Damping Ratios



|                      | Natural period (s) |       |       | Damping ratio |       |       |       |       |
|----------------------|--------------------|-------|-------|---------------|-------|-------|-------|-------|
|                      | Surge              | Heave | Pitch | Yaw           | Surge | Heave | Pitch | Yaw   |
| Spar                 | 137.7              | 31.7  | 41.0  | N/A           | 0.050 | 0.060 | 0.057 | N/A   |
| Semi-<br>submersible | 112.6              | 17.5  | 29.0  | 80.2          | 0.066 | 0.097 | 0.050 | 0.037 |
| TLP                  | N/A                | 1.07  | 2.85  | 15.9          | N/A   | 0.021 | 0.046 | 0.025 |

## Predicted RAOs





