

Using the NORSEWInD lidar array for observing hubheight winds in the North Sea

Charlotte Bay Hasager, DTU Wind Energy Detlef Stein, DNV GL Michael Courtney, DTU Wind Energy Alfredo Peña, DTU Wind Energy Torben Mikkelsen, DTU Wind Energy Matthew Stickland, University of Strathclyde

Andrew Oldroyd, Oldbaum Services

Trondheim, 22 - 24 January 2014

NORSEWInD in brief

Northern Seas Wind Index database project (2008-2012)

Coordination of Oldbaum Services for a consortium of 20 partners. The budget of \in 7.9 million with \in 3.9million from EC FP7.

Offshore wind development is becoming increasingly expensive as developers move to deeper waters. Recent met masts have demanded prices upwards of €15million.

Motivation for alternatives: LIDARs on platforms.

LIDAR data has been acquired, collated, quality controlled and analysed.

This represents the largest single purpose wind LIDAR dataset in the industry worldwide.

NORSEWIND provides offshore wind atlases of the North, Irish and Baltic Seas based on mesoscale modelling and satellite images.

DTU

Content

•Study area

- •Pre deployment lidar tests
- •Deployment of lidars at offshore platforms
- •Post deployment lidar tests
- •Flow distortion at platforms
- •Selected results
- •Summary

Measurement locations in the North Sea


```
In collaboration with industries:
```

DONG energy Statoil Hydro ASA TAQA Shell UK Talisman Energy Kinsale Energy SSE 3E Scottish Enterprise Scottish and Southern Renewables

Pre and post deployment lidar tests at Høvsøre

Høvsøre illustration of set up Wind turbine 5 Wind turbine wake for wind direction 300° 200m H=116m: R=66m H=40m: R=22m Lidar 43m Met. mast Wind sector: 200° - 300°

"NORSEWInD standard"

Data quality acceptance levels for NORSEWInD lidar systems. *u* stands for wind speed.

Parameter	Criteria	Ranges (Height and Speed)
Absolute error	<0.5 ms ⁻¹ for 2 < u < 16 ms ⁻¹ Within 5% above 16 ms ⁻¹ Not more than 10% of data to exceed those values	All valid data
Data availability	Assessed case by case Environmental conditions dependency	All valid data
Linear regression Slope	Slope between 0.98 and 1.01 <0.015 variation in slope between u-ranges (b) and (c)	Heights from 60 to 116 m u-ranges: (a) 4–16 ms ⁻¹ , (b) 4–8 ms ⁻¹ , (c) 8–12 ms ⁻¹
Linear regression Correlation coefficent (R ²)	>0.98	Heights from 60 to 116m u-ranges: (a) 4–16 ms ⁻¹ , (b) 4–8 ms ⁻¹ , (c) 8–12 ms ⁻¹

Measurement wind speed at cup vs. lidar

The vertical lines indicate the 4, 8 and 12 ms^{-1} levels.

Pre-deployment test results

Linear correlation slope and R^2 for the wind speeds in the range from 4 to 16 ms⁻¹ at four heights.

Lidar	Slope at 116 m 100 m 80 m 60 m	R ² at 116 m 100 m 80 m 60 m
1	0,991 0,976 0,977 0,948	0,999 0,976 0,974 0,915
2	0,988 0,992 0,991 0,993	0,999 0,999 0,998 0,998
3	0,993 0,997 0,997 1,000	0,998 0,998 0,998 0,997
4	0,996 0,999 0,998 0,998	0,999 0,999 0,999 0,998
5	0,985 0,993 0,992 0,993	0,999 0,998 0,998 0,997
6	0,983 0,986 0,986 0,990	0,996 0,996 0,996 0,995
7	0,978 0,983 0,984 0,992	0,994 0,994 0,995 0,995
8	0,976 0,980 0,977 0,989	0,995 0,996 0,996 0,995

Lidars 1-5 are WindCube and 6-8 are ZephIR

Offshore platforms used for deployment

Offshore installation schematic rig/platform

Red dots ZephIR, Blue dots WindCube

Offshore measurement heights

The lidar deployment height and observational heights are listed in meter above mean sea level. WC is WindCube, ZP is ZephIR.

Platform	Babbage	Beatrice	Fino3	HornsRev2	Jacky	ORP	Schooner	Siri	Taqa	Utsira
Lidar type	ZP	ZP	ZP	WC	WC	WC	WC	WC	WC	WC
Height	42	42.5	26	26	28	30	36	45	30	26
1	60	52.5	51	66	60	70	76	85	70	67
2	80	75.5	71	86	80	90	92	105	90	80
3	100	90.5	91	106	100	110	99	125	110	100
4	130	105.5	101	126	116	130	102	145	130	120
5	160		130	146	130	150	107	161	150	140
6			160	166	160	170	116	175	170	160
7				196	200	190	126	205	190	180
8				226	250	210	152	245	210	200
9				256	300	230	182	295	230	250
10				286			216	345	250	300

Offshore measurement periods

CNR and data availability offshore

The carrier-to-noise ratio (CNR) as a function of observations height above installation.

The average data availability as a function of observations height above installation.

Data availability

System and data availability in % and hours are listed during the offshore deployment. The values are for observations at around 100 m AMSL.

Lidar	System Availability in %	Operational Hours	Data Availability in %	Data Hours
Utsira	85	14,995	81	12,075
Horns Rev 2	98	18,433	98	18,019
Taqa	99	9120	97	8870
Siri	95	9585	85	8178
Fino3	98	4304	88	3778
ORP	100	792	73	581
Jacky	97	5622	93	5228
Beatrice	86	9597	85	8154
Babbage	99	6255	97	6070
Schooner	86	8583	76	6538
Total		87,286		77,491

Around 12 years data in total

Post deployment test results

Linear correlation slope and R^2 for the wind speeds in the range from 4 to 16 ms⁻¹ at four heights.

Lidar	Time	Slope at 116 m 100 m 80 m 60 m	R² at 116 m 100 m 80 m 60 m	Ν
	Pre	0,988 0,992 0,991 0,993	0,999 0,999 0,998 0,998	3,606
2	Post	0,991 0,997 0,993 0,992	0,999 0,998 0,998 0,997	3,659
	Diff.	0,003 0,005 0,002 -0,001	0,000 -0,001 0,000 -0,001	-
	Pre	0,996 0,999 0,998 0,998	0,999 0,999 0,999 0,998	5,065
4	Post	0,989 0,994 0,989 0,999	0,998 0,998 0,998 0,997	3,510
	Diff.	-0,007 -0,005 -0,009 0,001	-0,001 -0,001 -0,001 -0,001	-
	Pre	0,985 0,993 0,992 0,993	0,999 0,998 0,998 0,997	991
5	Post	0,983 0,987 0,984 0,992	0,999 0,999 0,998 0,998	2,791
	Diff.	-0,002 -0,005 -0,008 -0,001	0,000 0,000 0,001 0,001	-
	Pre	0,976 0,980 0,977 0,989	0,995 0,996 0,996 0,995	1,547
8	Post	0,960 0,971 0,970 0,979	0,993 0,994 0,995 0,995	1,206
	Diff.	-0,016 -0,009 -0,007 -0,010	-0,002 -0,002 -0,001 0,000	-

Flow distortion analysis for rigs/platforms

Wind tunnel experiments

CFD modelling

Wind tunnel and CFD results

			(Hei	Height ៖ ght Norn	Height AMSL for 2.5% Free-Stream				
	Rign	Lidarm	Wind Tunnel	0	CFD	Results		CFD F	Results
Platform	Height (m)	Height (m)	Point	Po	int	L	idar	Lidar	
			и	и	θ	и	θ	и	θ
Babbage	42	42	33 (0.8)					75	
Bootrigo	67	12.5	64(10)	30	>64	34	50.5(1.0)	765	102
Deatrice	02	42.3	04 (1.0)	(0.5)	(1.0)	(0.5)	39.3(1.0)	70.5	102
HornRev	26	26	30(1,2)	44	57	25	55(21)	50	80
2	20	20	50 (1.2)	(1.7)	(2.2)	(1.0)	33 (2.1)	30	80
Joolary 29		28		20	19	10	18 (0.6)	29	16
JACKY	28	28		(0.7)	(0.7)	(0.4)	18 (0.0)	30	40
Sahaanan	29	26.25	24(0.6)	24	35	0 (0, 2)	24(0.6)	20	51
Schooner	38	30.23	24 (0.0)	(0.6)	(0.9)	9 (0.2)	24 (0.6)	39	34
Taga	21 4	20	27(12)	30	36	33	27(0.0)	62	57
Taqa	31.4	30	37 (1.2)	(1.0)	(1.1)	(1.1)	27 (0.9)	03	57
Litaina	26	26		108	192	150	300	176	226
Utsira	20	20		(4.2)	(7.4)	(5.8)	(11.5)	170	320

Selected results from lidar observations

All NORSEWInD wind lidars were able to observe winds at 100 m and higher. Most of them were pulsed lidars (WindCubes). For those the availability of data decreases with height.

In order to maximize the amount of data we decided to estimate the wind shear from the two closest wind speed observations to the 100 m height.

$$\frac{u_1}{u_2} = \left(\frac{z_1}{z_2}\right)^{\alpha}$$

$$\alpha = \frac{z}{u} \left(\frac{du}{dz}\right) \approx \frac{z}{u} \left(\frac{\Delta u}{\Delta z}\right)$$

$$\alpha = \frac{\Phi_m}{\ln\left(\frac{Z}{Z_0}\right) - \psi_m}$$

Normalized distribution of **a**-values around 100m

a-'roses' at Horns Rev 2 and Taqa around 100m

Horns Rev 2

Taqa

a-variation diurnal and seasonal at Horns Rev 2

Summary

- ✓ First comprehensive project to demonstrate use of lidars offshore
- \checkmark Pre and post deployment results were relatively good
- --- notice this was for more than two years of observations offshore
- ✓ System availability was acceptable
- \checkmark Further development in lidars since 2008 this improve data availability and increase system reliability
- ✓ Wind shear data observed near hub-height at several nodes in the North Sea (also analysed from several met masts)
- ✓ Lidar wind data in database are now available for further research
- ✓ Bankable?

DTU

Further reading

MDPI Journals A-Z	For Authors	For Editors	For Librarians	About	Open Access	Policy				Submit to Remote	Sensing	Login	Register
* remote sensing	e g	Title / Keyword Author Article Type	all	~	Journal Section Special Issue	Remote Sensing all	* * *	Volume Issue Page		Clear Search	IMF FAC 2.1	PACT CTOR 101	
<u>Remote Sensing</u> <u>Volume 5, Issue 9</u>	Remote S Article	Sens. 2013 , 5(9),	4280-4303; doi	:10.3390/	rs5094280							C	Open Access
Article Versions	Hub He Quality	eight Ocean / Control an	Winds over d Data Mana	the No	orth Sea Ob nt	served by the	NO	RSEW	InD L	idar Array: Measuri.	ng Teo	hnique	s,
Full-Text PDF [999 KB]	Charlotte	e Bay Hasager ¹	* [🖂] , Detlef Stei	n ²¹²¹ , Mic	hael Courtney	^{,1⊠} , Alfredo Peña	^{1⊠} , 1	orben M	ikkelse	en ^{1™} , Matthew Stickland ³	² and A	Andrew OI	droyd 4
Full-Text XML	1 Departe	nent of Wind End	ray Technical I	Iniversity	of Denmark Fr	adariksharavai 399	400	N Roskild	o Don	mark			
Article Versions Notes	² GL Gar	rad Hassan, Brod	oktorkai 18, D-20)457 Han	burg, Germany	r	, 400	U I KUSKIIU	e, Dem	indik.			
Related Info	³ Departm	ment of Mechanic	al Engineering	University	of Strathclyde	Glasgow G1 1XJ	υк						
Article Statistics	4		,		,	,g,							
Google Scholar	1 Oldbau	m Services, Stirli	NG EK9 4NE, UK									Affe h	are Ver
Order Reprints	* Author t	to whom corresp	ondence should	be addre	ssed.							JIISh	ore veri
Citation	Received	l: 28 July 2013; in	n revised form: 3	Septemi	ber 2013 / Acce	pted: 3 September	2013	/ Publish	ed: 5 S	eptember 2013	F	inal repo	rt on NORSE
Cite this article		suplead DDE Eu	II Toxt [000 KP	upload	d 5 Contombo	- 2012 00-12 CEST	1						
Export to BibTeX		Swilload FDF FU	m-16xt [333 VD	, upioado	ed o behrembe	1 2013 05.43 CESI	1						
Export to EndNote	Abstra	ct: In the North S	Sea, an array of	wind prof	iling wind lidars	were deployed ma	inly a	n offshor	e platfo	orms. The purpose was to		>	
More by Authors	mast s	ignt. ⊏ight lidars ituated in flat tei	were validated rain. The so-ca	prior to d lled "NOF	RSEWIND stand	ment with observat dard" for comparing	ons lida	rom cup and ma	anemo st wind	data includes the criter		Ð	
[+] on DOAJ	regress	sion should lie w	ithin 0.98 and 1	.01 and t	he linear correl	lation coefficient his	her	han 0.98	for the	e wind speed range 4-1		0	

Hasager et al. 2013, Remote Sensing, open access journal, online

Peña et al. 2012, Offshore vertical wind shear,

DTU Wind Energy report, online

cal Wind Shear

InD's work task 3.1

Database available for research

Contact Andy Oldroyd at Oldbaum Services

lome	About	Partners	Publications	Work Packets	Database	Contact	

