Experimental verification of a voltage droop control for grid integration of offshore wind farms using a multi-terminal HVDC

Raymundo E. Torres-Olguin^a, Atle R. Årdal^a, Hanne Støylen^b, Atsede G. Endegnanew^a, Kjell Ljøkelsøy^a, and John Olav Tande^a

^aSintef Energy Research

^bNTNU dept. of Electrical Power Engineering

Outline

- Introduction
- ☐ Reference system
- Scaled experimental platform
- Voltage droop control
- ☐ Laboratory case studies
- Conclusions

Objective

This work presents a **lab-scale implementation** of a **voltage droop control** for **a multi-terminal HVDC system** connecting an **offshore wind farm**.

Introduction

- ☐ In the near future, the construction of an **offshore electrical grid** is expected in **Europe**. The objective of such a transmission framework is to facilitate large-scale integration of **renewable energy** and to improve the **European power market**.
- It is widely recognized that for long-distance bulk-power delivery, **HVDC** transmission is more economically attractive than HVAC transmission
- A multi-terminal HVDC system presents many challenges: protection, control, and operation issues.
- One of the most critical issues is the voltage control and power balance

From http://www.friendsofthesupergrid.eu/

Introduction

Several **methodologies to balance the power and control the voltage** have been studied in the literature

- Master-slave control
- Voltage-margin control
- ☐ Voltage-droop control

Reference system

- Multi-terminal HVDC system composed by four terminals which aims to represent the future power HVDC in the North Sea; Norway, Germany and UK are interconnected together with an offshore wind farm.
- ☐ It is considered that the **three onshore** grids have a nominal voltage of **400 kV**.
- HVDC system is rated at ± 320 kV and a 1200 MW offshore wind farm is considered.

Scaled experimental platform

- The set consists of **four 60 kVA VSCs**.
- The wind farm is emulated using a motor drive and a 55 kVA induction motor/generator-set.
- **The strong grids** are represented by the laboratory 400 V supply.
- A independent grid is emulated using a 17 kVA synchronous generator.
- The **DC line emulator** consists of variable **series resistors** to vary the length of the emulated cable.

SINTEF/NTNU smart grid lab

Scaled experimental platform

- The control system runs on a processor system that is embedded in FPGA (Field-Programmable Gate Arrays).
- For adjusting the settings, the converter is equipped with a **CAN interface** which enable receiving, sending, and controlling reference remotely.
- The droop voltage control is achieved by using the
 Labview programming environment

Voltage droop control

The voltage droop controller is a proportional control law that regulates the DC voltage and provides power sharing between the different power converters.

The mathematical expression for voltage droop control is given by

$$V_{DC} = V_0 - \rho \left(P_{DC} - P_0 \right)$$

ho Droop constant $V_{\circ}(P_{\circ})$ Voltage and power so

Voltage and power set points

Laboratory case studies

Case 1: wind variations

Case 2: Disconnection of two terminals

Case 1a: Varying wind – equal droop constants

- Converters share equally the power since the droop constants and setpoints are equal
- Norway is absorbing slightly less wind power since the resistance is higher due to longer cable length

Case 1b: Varying wind – different droop constants

- Droop constants:
 - Germany: 40 power pu/voltage pu
 - Norway: 20 power pu/voltage pu
 - UK: 10 power pu/voltage pu
- ☐ The powers are distributed proportionally to the droop constants
- ☐ The droop constant should reflect the ability of the onshore grid to absorb or provide additional power to the DC-grid

Case 1c: Varying wind – different power set-points

- ☐ Droop constants all equal (=20)
- Power set-points are different: 0.5 pu (Norway),0.25 pu (Germany) and 0.25 pu (UK).
- Now, Norway exports power towards both UK and Germany
- Since droop-constants are equal, the additional wind production is shared equally among the three countries similar to case 1a

Case 2: Sudden disconnection of two converters

- Initially all countries are absorbing the same wind power. All droop constants are equal
- ☐ At t=0.7 Norway is disconnected
 - The wind power initially absorbed by Norway is shared equally between Germany and UK
- At t=1.7 UK is disconnected
 - Germany is now absorbing all wind power

System response is stable and with no overshoot against these severe events

Conclusions

- ☐ The overall goal has been to implement a voltage droop control in a down scaled model of a multi-terminal VSC-HVDC grid.
- Two scenarios have been used to test the performance of the droop-control and evaluate the stability of the system: variation in wind power production, and loss of two terminals during full wind production.
- The implemented system was able to ensure that the voltage stays within its steady state limits and to reach a stable operation point after the above disturbances were applied. Moreover, the system is able to tolerate the loss of one or two terminals. It can be concluded that the voltage-droop control scheme has been successfully implemented in this laboratory model.
- ☐ Future work: Secondary control, frequency reserve exchange, and DC protection and fault handling.

Thanks for the attention

Picture by John Olav Tande