Reliability of power electronic converters for offshore wind turbines

A main topic in the research project:

"Power Electronics for Reliable and Energy Efficient Renewable Energy Systems" Short name: OPE Duration: 2009-2014 Financing: The Research Council of Norway and three industry partners Web: www.sintef.no/OPE

> Magnar Hernes SINTEF Energy Research Magnar.Henes@sintef.no

Reliable and Energy Efficient Renewable Energy Systems

Power electronics for wind farm power conversion

Converter topologies for MV and HV applications

Due to voltage limitation of single IGBTs, MV and HV converters need more complex topologies and/ or series connection of IGBTs

Reliability of power semiconductors - Failure modes

- Spontaneous failures due to overloads
 - Related to power semiconductor chips
 - Thermal overload and overvoltage
 - Exceeding V/I safe operating area for the device
- Failures triggered by external environment
 - E.g. intrusion of humidity
 - E.g. cosmic radiation

Failures due to aging or exhaustion

- Mechanical and electrical termination of the chips
 - Packaging and encapsulation

Project focus

Typical turn-off behaviour for a controllable power semiconductor

- Mostly chip related:
 - Spontaneous failures
 - Cosmic radiation
- Mostly related to packaging
 - Ageing or exhaustion
 - Intrusion of humidity in chip insulation

IGBT packaging

- Mainly two technologies
 - Planar bonded modules
 - Press-pack housing

- Module label

 - A 750A/ 6500V IGBT module from Infineon

• An 1800A/ **4500V** press-pack IGBT from Westcode

 Both can contain both IGBT chips and antiparallel freewheeling diodes

Planar bonded IGBT modules

- Main failure mechanisms:
 - Bond wire lift off
 - Solder layer disconnect
- Thorough investigations and publications $N_{f} = K \cdot \Delta T_{J}^{\ \beta_{1}} \cdot e^{\left(\frac{\beta_{2}}{T_{J}+273}\right)} \cdot t_{on}^{\ \beta_{3}} \cdot I^{\beta_{4}} \cdot V^{\beta_{5}} \cdot D^{\beta_{6}} \quad (\mathsf{T}_{\mathsf{j}}=\mathsf{T}_{\mathsf{low}} \text{ in } ^{\circ}\mathsf{C})$
- Failure mode
 - Failure to break

Life time curves – no of cycles to failure

Technology for a better society

Press-pack IGBTs

- Failure mechanisms:
 - Limited knowledge
- Few publications on failure mechanisms and reliability
- Failure mode
 - Expected failure to short

Main focus on reliability of press-pack IGBTs in the OPE project

- The OPE project prioritized reliability of press pack devices for the following reasons:
 - Limited published information regarding failure mechanisms and power cycling life time
 - Press-pack devices are very relevant in medium voltage wind power applications due to series connection capabilities (fail-to short-circuit)
 - Special power cycling stress condition for wind power converters (wind fluctuations, low motor side frequency etc.)
- Then we need to know:
 - Load profiles for the application, e.g. power cycling due to wind fluctuations
 - Stress levels related to grid side and generator side load conditions (power frequency, $\cos \phi$ etc.)
 - Stress levels related to the converter power circuit and controls (topology, switching frequency etc)
- Theoretical work
- Experimental work

Case study: A medium voltage PWM 3L-NPC VSC for 3.3 kV AC

- DC link voltage ~ 5 kV
- 3.3 kVac (LL voltage)
- Switching frequency ~ 1500 Hz +/-
- 5 MVA (connected to a 3.6 MW wind turbine gen.)
- IGBT: Press-pack1800 A/4500 V

Test Cell for mapping switching characteristics of HV IGBTs

- Present Test Cell with 0-5 kV DC-link
- Planned to be extended to 10kV

- "Double-pulse" waveform for measuring IGT turn-on and turn off waveform
- External liquid (silicon oil) heating/cooling circuit for temperature control (5- 50 °C)

Turn-off waveforms with DC-link 2800V and turn-off current 1800A

6

6

Power Cycling Tester for life-time testing of high-power IGBTs (2000 A)

Project investment of ~1MNOK. Developed in cooperation with Chemnitz University of Technology

Operation of the Power Cycling Tester

OPE Power Cycling Tester – Control screen

() SINTEF

Technology for a better society

Plot from measurement of planar bonded modules

Technology for a better society

Power Cycling Tester with 4x modules + 4x press packs

Modelling press-pack IGBT for stress analysis Work by PhD student Tilo Poller at Chemnitz University of Technology

- 3D Full model
- 350 k elements
- 1.3 M nodes
- 148 contact layers

Pressure distribution in the IGBTs, emitter side

90,643

Simulation model of (PSCAD) of PWM Voltage Source Converter

IGBT loss calculator in PSCAD with thermal network add-on

Simulated load dependent swings of IGBT hotspot temperature

Motive:

 Combine laboratory measurements with numerical simulations to estimate efficiency and lifetime of power semiconductors

Simulated temperature swings affected by:

- Switching frequency
- Line-side and generator side power frequency, cos φ etc,
- Filter ripple current
- Wind fluctuations
- ..and more

Methodology for power cycling lifetime estimation

 TABLE VI.
 SUMMARY OF LIFETIME CONSUMPTION

device	$\sum LRN$	$\sum LR$	LR	Lifetime
	[p.u]	[p.u.]	[p.u.]	[years]
IGBT, CGe	0.039	0.0719	0.111	17.8
IGBT, CGr	0.047	0.057	0.104	19.3
Diode, CGe	0.083	1.244	1.327	1.51
Diode, CGr	0.016	0	0.016	122

Example:

If not oversized lifetime for the generator side diode can be very short!

Planned continuing activities on converter reliability

- Completion of the reliability work in the OPE project (deadline 30th June 2014)
 - Continue power cycling of IGBTs
 - Press-packs and modules
 - Power Cycling of single chips (master student work)
 - Post processing of result
 - Final reporting and publications
- Develop a new research project for continuation of converter reliability topics
 - Together with colleagues at Chemnitz University of Technology
 - Start-up spring 2015
 - Exploit results and ideas from OPE
 - Address VSC converter applications for HV collecting and transmission systems
 - Power cycling capabilities assuming various converter topologies and AC/DC systems
 - New methods for condition monitoring, predicting rest life-time etc.

Thank you for your attention !

