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EERA-DTOC Project[1] 

The EERA (European Energy Research Alliance) partners are pooling their 
resources in support of the Strategic Energy Technology plan (SET plan) of the 
European Commission. Some partners of the Joint Programme on Wind Energy 
have state-of-the-art software models in single and multiple wake, energy yield 
and electrical models. Then, the concept of the EERA's Design Tool for Offshore 
Wind Farm Clusters (EERA-DTOC) project is thus to combine their expertise in a 
common integrated software tool for the optimised design of offshore wind 
farms and wind farm clusters acting as wind power plants (WPP). 
  
The project has defined the following Objectives: 
• Integrate existing atmospheric and wake models from single wind farm to 

cluster scale 
• Predict energy yield precisely through simulation 
• Interconnection optimization for grid and offshore wind power plant system 

service 
• Validation of the newly integrated existing models based on wind farm 

observations 
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Kriegers Flak Study Case[2][3] 

 Layout done by optimization tool (Net-Op), data include 

 Conenction points 

 Cable length 

 Applied technology (AC/DC) 

 Transmission capacity 
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Wind Cluster Management System I 

 

 geographically distributed wind farms aggregated to clusters 

 Differ in size depending on considered service 

 Span over one or more voltage levels 

 Provide grid supporting functionality 

 Coordinated manner 

 Considering grid structure 

 forecast data with different temporal resolutions  

 Applications: 

 Field test in portugal 

 Park controller including forecast (alphaventus) 

 Coordinated reactive power supply including short-term forecast and 
transformer tap-changer control in meshed distribution grids with 
multiple feeders 
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Wind Cluster Management System II 

1. Provision of 
Frequency 
Support: 
- Primary Reserve 

 

2. Congestion mgmt 

 

Pan-European 
Synchronous Area 

1. Provision of 
Frequency Support: 
- Secondary Reserve 

 

2. Congestion mgmt 

 

 

 

Control Area Local/ Regional Area 

1. Provision of Voltage 
Support: 
- Voltage control 
- Reactive power 
 

2. Congestion mgmt 
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Wind Cluster Management System III 

Power Monitor 

Get information 

of a single turbine 

or the whole cluster  

Active and reactive power 

data (gross values – without 

grid losses) 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

Historic, 

measurement data 

Forecast data 

(min, mean, max) 

Active and reactive power data 

relating PCC node 

(net values – including grid losses) 

Minimum available 

active power feed-in 

for the next hour 

Possible 

operation modes 

for the next hour 

cos (WTG) = 1 

 
 

 
 

 
 

 

Time frame: 1h 

PQ-Curve at UW Hagermarsch 
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Wind Cluster Management System IV 
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HVDC Technology Integration 

 major impact is evoked by representing and respecting HVDC 
technology during the calculation process  

 VSC-HVDC systems are the preferred technology for offshore grids  

 Voltage control 

 Islanding operation 

 CSC-HVDC systems manageable if the grid is strong enough  

 e.g. meshed connection to onshore nodes 

 Critical size in terms of power  switching losses VSC still higher 
than CSC 

 Both technologies considered and implemented 
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CSC-HVDC Load Flow Model[4] 
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VSC-HVDC Load Flow Model[4] 
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Modified Newton-Raphson Load Flow Algorithm I [4] 
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Modified Newton-Raphson Load Flow Algorithm II [4] 
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Modified Newton-Raphson Load Flow Algorithm III [4] 
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Control Mode Selection 

 Scanning for swing bus (slacks) in synchronous areas 

 Slack Mode Operation of HVDC 

 Set-point allocation due to demand or reserve restrictions 

 Offshore grid operational control needs to be coordinated with 
ancillary service provision  
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Ancillary  Services Analysis I 

Category Service Description 

Frequency Support 

Reserve 

Frequency Restoration Reserve 

(Secondary Reserve) 

Replacement Reserve (Minute 

Reserve) 

Balancing Power Balancing power supply 

Voltage Support 
Reactive power contribution to 

onshore nodes 

Reactive power provision of 

the cluster (if connected with 

AC) or by HVDC links to 

onshore nodes 

System Management Congestion Management 

Maximum load flow into the 

grid due to congestions on 

land 
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Ancillary  Services Analysis II [5][6] 
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Reserve and Balancing Power Provision  

• Dark blue: day ahead forecast, probability 99.5 %,  possible reserve 

• Light blue: day ahead forecast, probability 90 %,  schedule 

• Orange: 1h forecast, probability 99.5 %,  balancing power (intraday) 

• Red: non-dispatchable power  losses due to forecast uncertainties, 
      security requirements 
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Remarks and Outlook 

 Results provided are technical solutions 

 No procurement or market rules considered 

 Coupling with market rules need to be investigated (see next slide)  

 Optimization of voltage selection/ transformer placement, reflect 
cost in: 

 Necessary transformers 

 Insulation material of cables 

 Need for platform space due to insulation distances 

 Modular expansion stages  optimization on time perspective 

 Evolving technologies (DC breakers, new converter…) 

 Market releases 

 Reliability analysis and design of AC/DC systems  
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Virtual Power Plant (VPP) vs. Wind Farm Cluster (WFC) 

WFC VPP 

“Copper Plate” “Grids” 

Common functionalities 
 “Smoothing effect” advantage 
 Portfolio optimization 
 Frequency Support 
   (Primary, Secondary and Tertiary Reserve) 

Grids Markets 

 Voltage Support 
 Congestion Mgmt 

 Bidding 
 Cross market 
optimization 
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