Power System Integration of Offshore Wind Farms:

Challenges Towards Horizon 2020

Tobias Hennig, M.Sc.
Fraunhofer IWES

www.eera-set.eu
Agenda

• What is EERA JP Wind?

• Power system integration challenges towards 2020

• Example projects:
 − Fraunhofer IWES
 − Other projects (EERA)

• What is EERA SP4 doing towards Horizon 2020
 − The Horizon 2020 call for projects
 − EERA SP4 project proposals

www.eera-set.eu
EERA Objectives

- Preparing pre-competitive research laying a scientific foundation for cost effective wind power production and integration.

- **O1: Wind power plant capabilities:** Enable wind power plants to provide services and to offer characteristics similar to conventional power plants.

- **O2: Grid planning and operation:** Sustainable enlargement of the transmission capacity and enhancement of the utilisation of the grids to allow large-scale deployment of wind energy technology.

- **O3: Wind energy and power management:** Tools and business models (markets) to allow economic wind power utilisation.
Ambition of the Joint Programme

• The EERA vision for the joint programme on wind energy is:
 – to provide the strategic leadership for the scientific–technical medium to long term research to support the EII and the Technology Roadmap’s activities on wind energy and
 – on basis of this, to initiate, coordinate and perform the necessary scientific research.

• The vision calls for all the EERA participants and associates:
 – to align their research in wind energy topics which influence the use and deployment of wind energy and
 – Perform coordinated and structured research in medium to long-term programmes with shared research facilities.

www.eera-set.eu
The joint program comprises the following 5 sub-programs:

- **Wind Conditions**: coordinated by DTU in Denmark.
- **Aerodynamics**: coordinated by ECN in the Netherlands.
- **Offshore Wind Energy**: Coordinated by SINTEF in Norway.
- **Grid Integration**: coordinated by FhG IWES in Germany.
- **Research Facilities**: coordinated by CENER in Spain.
POWER SYSTEM: INTEGRATION CHALLENGES TOWARDS 2020
Transformation of the Supply System

100% Integration of Renewable Energy

System Security in the Transmission Grid

European Electricity Market

Market-Driven Operation of Power Plants

Flexible Line Management

High Temperature Conductors

Innovative Transmission Technologies

Environmental Impact Public Acceptance

Availability & Economic Efficiency

Alternative Solutions and Grid Extension Requirements

39% Renewable Energy Sources until 2020

1. System Services
 - Voltage Support & Short-Circuit Power
 - Islanding & System Restoration

2. Increasing Flexibility
 - Power Storage
 - Demand Side Management

Figure 1: dena Grid Study II – schematic of subject area

www.eera-set.eu
O1: Active Contribution to System with Cluster Control

Pan-European Synchronous Area
1. Provision of Frequency Support:
 - Primary Reserve
2. Congestion mgmt

Control Area
1. Provision of Frequency Support:
 - Secondary Reserve
2. Congestion mgmt

Local/Regional Area
1. Provision of Voltage Support:
 - Voltage control
 - Reactive power
2. Congestion mgmt
O1: Power Plant Capabilities

Power Monitor

Get information of a single turbine or the whole cluster

Active and reactive power data (gross values – without grid losses)

PQ-Curve at UW Hagemarsch

Historic, measurement data

Forecast data (min, mean, max)

Minimum available active power feed-in for the next hour

Possible operation modes for the next hour

Time frame: 1h

$\cos\phi (\text{WTG}) = 1$

Active and reactive power data relating PCC node (net values – including grid losses)
O1: Reactive Power Management

1. Dynamically adjusting the wind farm set point taking all voltages and operational limits into account
2. Try to realize an optimal reactive power flow (e.g. zero) between the grid levels

Solution with the (new) WCMS

DSO: Distribution system operator
TSO: Transmission system operator
O2: Grid planning and operation
European Commission identified offshore grid in the North Sea as a priority corridor\(^1\), connecting northern and central Europe.

North Sea Offshore and Storage Network (NSON)

Measures:
- $f \rightarrow$ global Parameter
- $U, I \rightarrow$ local Parameter
- $t \rightarrow$ global Timestamp

PMU

PCC 2

PCC 3

VPP

O2: Active Support of Grid Operation

www.eera-set.eu
O3: Wind energy and power management

At the threshold for the age of transmission & storage

www.eera-set.eu
O3: Wind energy and power management

Seasonal load anomaly compared to wind and solar

PV Wind load anomaly

Consumption anomaly [GW] (mean=357GW)
O3: Wind energy and power management

- Fluctuation of monthly residual load (RES-consumption) in a 100% renewables scenario

Max. required average transmission capacity: 15 GW (in D) – Max. >>>

Required storage capacity: 0.5% - 8% of average European electricity demand per year 16-260 TWh/a

www.eera-set.eu
Challenges

- **C**: Provision/support of system services (frequency, voltage, islanding, black start)
 R: Superior control mechanisms, VPP

- **C**: Sustainable grid extension/expansion and grid planning
 R: Models and planning tools including wind (&RES) generation

- **C**: Reliable grid (system) operation considering millions of individual generators
 R: close co-operation of TSO/DSO, generation, and trading, new operating mechanisms supported by advanced monitoring and dynamic security assessment

- **C**: balance large fluctuations in rage of x0 TWh
 R: forecast tools (minutes to months) and simulation of RES-development scenarios considering all RES and demand sectors
EXAMPLE PROJECTS
Example projects

- **IMOWEN**
 - Integration of large amount of wind energy using intelligent local operation and control

- **EERA-DTOC**
 - Design Tool for Offshore Wind Farm Clusters
 - Ancillary Service Analysis will be presented at DeepWind

- **NSON**
 - North Sea Offshore and Storage Network
• Typical 110-kV DSO district
• High penetration of wind
• Double-busbar topology, highly meshed, 7 TSO feeders, underlayed MV grid
• Cluster based on controllable wind parks with decent electrical distance

Szenario A	100 %	100 %	640 (ind.)	170	0.27
Szenario B	100 %	40 %	550 (ind.)	170	0.31
Szenario C	60 %	100 %	340 (ind.)	100	0.29
Szenario D	60 %	40 %	220 (ind.)	100	0.45
Szenario E	30 %	100 %	120 (ind.)	50	0.42
Szenario F	30 %	40 %	10 (cap.)	50	5.0
European Commission identified offshore grid in the North Sea as a priority corridor\(^1\), connecting northern and central Europe.

North Sea Offshore and Storage Network (NSON)

NSON initiative is determined to tackle challenges of an offshore grid in the North Sea as a combined effort of Univ. of Strathclyde, SINTEF and Fraunhofer IWES in a pre-project and feasibility phase.

Objectives of the NSON initiative’s pre-project and feasibility phase:

- Analyzing and evaluating different market and grid design concepts of a NSON and their socio-economic cost-benefit allocation.
- Evaluating potential of offshore storage systems in a NSON.
- Examining effects of a NSON on European supply system.
- Assessing repercussions on onshore grid infrastructure.
- Developing reusable mathematic optimization methods for transmission grid planning and operation.

Technical topics for offshore power system planning:

- Portability of conventional planning rules
- Planning guidelines for DC systems
- Fulfillment of reliability and redundancy requirements
- Feedback on investment costs
- Modular expansion stages
- Optimize grid under consideration of evolving technologies and market releases of components
WHAT IS EERA SP4 DOING TOWARDS HORIZON 2020
The Horizon 2020 call for projects

• EU major challenges is to make its energy system:
 – Clean, secure and efficient, while…
 – ensuring EU industrial leadership in low-carbon energy technologies.

• Call H2020-LCE-2014/2015 aims at:
 – developing and accelerating the time to market of affordable, cost-effective and resource-efficient technology solutions
 – to decarbonise the energy system in a sustainable way
 – to secure energy supply
 – to complete the energy internal market in line with the objectives of the SET-Plan
EERA SP4 project proposals

• EERA SP4 will address various projects:
 - 4 to LCE2 → 2014
 - 1 to LCE5 → 2015
 - 1 to LCE5 → 2015

• For LCE2 (this year) is preparing:
 - 2 regarding control strategies: 1 at WF level and 1 at WT level
 - 2 regarding innovative substructures
 - 2 regarding material development
 - Proposal will be presented in April 2014
EERA SP4 project proposals

• For LCE5 and 6 (next year) are two pre-proposals:

 − North Sea Offshore and Storage Network (NSON) “phase one” proposal

 − Minimization of curative re-dispatch improving preventive methods based Wind Cluster Management Infrastructure

www.eera-set.eu
Nationally funded NSON projects part of a pre-project/ feasibility phase – H2020 NSON project on European level next step towards realization

<table>
<thead>
<tr>
<th>Initial pre-project and feasibility phase</th>
<th>Horizon 2020 „phase one“</th>
<th>„phase two“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finished and ongoing projects (i.e. FP7 projects)</td>
<td>NSON project(s) on national level with international cooperation and exchange</td>
<td>Large-scale RD&D NSON project on European level leading to full-scale commercial operation</td>
</tr>
<tr>
<td>Regulators and authorities</td>
<td>„phase one“</td>
<td>„phase two“</td>
</tr>
<tr>
<td>Manufacturers, TSOs, renewable operators, …</td>
<td>deliver compulsory plan</td>
<td></td>
</tr>
</tbody>
</table>

I Who are potential key partners?

II Which objectives have to be defined in order to achieve the expected impact?
North Sea Offshore and Storage Network (NSON) proposal

• **Addressing:** LCE5 - Innovation and technologies for the deployment of meshed off-shore grids

• **Deadline:** 03/03/2015

Expected impact:

• **Accelerating** the deployment of meshed HVDC off-shore grids, with particular emphasis on Northern Seas partner countries, **before 2020**

• Ensuring that the **technology** will be **ready for deployment** in other regions in Europe for all transnational corridors defined in the trans-European energy infrastructure regulation, or be **compatible** (plug-and-play) **with** other **upcoming technologies** (e.g. ocean energy, solar energy, geothermal energy, etc. as soon as these technologies are ready for similar capacities)

• Ensuring **plug-and-play compatibility of all relevant equipment** of the key suppliers

• **Preparing** for **corresponding priority infrastructure** projects identified under the trans-European energy infrastructure regulation

• **Facilitating** the efficient **connection of off-shore wind resources to on-shore loads** and with other available generation **resources for balancing**, covering the main Northern Seas partner countries
Minimization of curative re-dispatch improving preventive methods

- **Addressing:** LCE6 - Transmission grid and wholesale market
- **Deadline:** 03/03/2015

Expected impact:
- To develop:
 - a) methodology to reduce the utilization of the curative methods;
 - b) manager system allows for mitigative actions of wind power plants and controllable power system components prior to an incident.
- Applying a continuous coordination process ? intelligent mgmt system.
- Usage of high resolution probabilistic forecast data for intermittent renewable energy resources.
- Usage of additional Information provided by the WCMS to the TSO
THANK YOU FOR YOUR ATTENTION.