ANALYSIS AND DESIGN OF AN AC/DC CONVERTER FOR OFFSHORE WIND TURBINES

René Alexander Barrera Cárdenas Marta Molinas

NTNU – Trondheim Norwegian University of Science and Technology

Outline:

- 1. Introduction
- 2. Parameters of design
- 3. Methodology for evaluation of Performance indicators
- 4. Main results
- 5. Conclusions

Offshore Wind turbine challenges

Optimal design targeting two objectives

 Maximize efficiency (Π): Reduce power losses. Less conversion stages.
 Maximize power density (ρ) of conversion system: Minimize weight/Size for a given power. Increase the Frequency.

Assumption: DC Grid is more convenient for offshore wind farms [MEYER] New WECS architectures for offshore applications. Design taken into account all stages of the system.

Wind Energy conversion System

Modular Power converter with N sub-modules.

→ series connection

✓ Voltage source operation✓ parallel connection

Parameters of design

Parameters of design – Converter

AC/DC Converter Module

AC-LINK	Converter Topology (AC/AC)		
3 phase Sinusoidal waveform	B2B Back-to- Back	IMC Indirect Matrix Converter [Holtsmark]	DMC Direct Matrix Converter [Holtsmark]
Squared waveform	B2B-3p Back-to- Back with 3-phase output	B2B-1p Back-to-Back with 1-phase output	RMC Reduced Matrix Converter [Garces]

*Holtsmark and Molinas, "Matrix converter efficiency in a high frequency link offshore WECS," in IECON 2011. **A. Garces. "Design, Operation and control of series connected power converters for offshore wind parks". Thesis for the Degree of Doctor of Philosophy. NTNU 2012.

Back to Back topologies

Matrix Topologies

- Higher number of IGBTs
- LC input filter
- No DC-Link capacitor
- Clamp circuit required

Methodology for evaluation of Performance indicators

- Evaluation of power losses, volume and weight.
- Model of the main elements in the system.

Methodology for evaluation of Performance indicators

Power semiconductor model

Power semiconductor model

Parameter variation of semiconductor module

Parameters and Design Constraints

Parameter	Value
Total Power	10 [MW]
Input Voltage	690[V]
Output DC Voltage	33 [kV]
Generator Frequency	50[Hz]
DC-Link Voltage ripple	1%
Current Input ripple	20%
Current Output ripple	20%
Generator Power factor	0.9
Magnetic material	Metglas alloy 2605SA1
Max. DT Transformer	70 K
AC-Link Freq. [kHz]	[0.2, 10]
Power x module [MW]	[0.2, 10]

Device	Reference	
Ref. Inductor (filters)	Siemens 4EU and 4ET	
Ref. DC-link Capacitor	EPCOS MKP DC B256XX	
Ref. AC-Capacitor	EPCOS MKP AC B2536XX	
IGBT Module	Infineon IGBT4 FZXXR17HP4	
DIODE Module	Infineon IGBT3 DDXXS33HE3	
Heat Sink	Bonded Fin - DAU series BF	
Axial FAN – Heat sink	Semikron SKF 3-230 series	

B2B – Selection of fsw1

Efficiency

The slope is less steep in solutions based on squared waveform in the AC-Link.

The RMC solutions are the most efficient for any number of modules or AC-link frequency.

Solutions based on matrix topologies present less variation in efficiency when increase in the number of modules

Power Density

- Similar maximum values are obtained with DMC and B2B3pSq topologies.
- B2B3pSq → 400 to 600 Hz
- DMC → 700 to 1000 Hz

 Low number of modules present the highest power density in all solution, however there is an optimum number of modules for each topology.

Power to mass ratio

- DMC and IMC solutions present the maximum values of Power to mass ratio.
- For RMC solution the maximum values are obtained at high freq.
- The optimal number of modules for max. P. to mass ratio is higher than the case of max. power density.
- An increase in the number of modules is less drastic in RMC and B2B1p solutions.

Pareto surface

Conclusions

 WECS based on DMC and B2B3pSq topologies will lead the best trade-off between efficiency and power density in range of AC-Link frequencies from 200[Hz] to 3[KHz].

 RMC topology has better performance when AC-link frequency is required to be above 3[kHz].

Thanks for your attention

Rene Barrera-Cardenas and Marta Molinas

(rene.barrera, marta.molinas) @elkraft.ntnu.no Department of Electric Power Engineering

22

Power semiconductor - Conduction losses

$$P_{cond} = K_{cond1} \cdot I_{c(avg)} + K_{cond2} \cdot I_{c(rms)}^{2}$$

Power semiconductor - Switching losses

Heat sink volume

Example: Capacitor Volume (1)

1. Selecting type and technology

²⁶

Example: Capacitor Volume (2)

2. Obtaining the model

The breakdown voltage (*Vb*) is defined by the separation of the electrodes and dielectric strength.

volume $\propto A \cdot d$

 $E_{stored} \propto \frac{\epsilon \cdot A}{d} d^2 \propto A \cdot d$

$$volume \propto E_{stored} \propto C \cdot V^2$$

Example: Capacitor Volume (3)

3. Regression model

$vol = (K_{11} \cdot C + K_{10})(K_{22}V^2 + K_{21}V + K_{20})$

 $vol = K_1(V) \cdot C + K_0(V)$ $K_0 \text{ and } K_1 \text{ depends of application voltage}$

Magnetic components losses

Core Losses → based on Steinmetz equation

$$P_{core} = K_{core} \cdot Vol_{core} \cdot f^{\alpha_c} \cdot B^{\beta_c}$$

highly dependent of magnetic material, volume and waveform voltage

• Copper Losses \rightarrow losses of all windings

$$P_{cu} = \sum_{i=1}^{nw} K_{cu(i)} \frac{\rho_{cu} N_{(i)} MLT_{(i)}}{A_{w(i)}} I_i^2 (1 + THD^2)$$

 K_{δ} as a function of frequency, winding design (layers, conductor)

Transformer volume and losses

Design process aims to minimize the volume of the transformer taking into account some assumptions.

- Type transformer structure
 - dry shell-type transformers
 - optimal set of relative dimensions***
- Temperature rise
 - \succ a Power losses
 - $\succ \alpha$ 1 / (surface area)
- Power rating
 - each winding carry the same current density

*S. Meier, et al. "Design Considerations for Medium-Frequency Power Transformers in Offshore Wind Farms." IEEE 2010.

** T. Mclyman. "Transformer and Inductor Design Handbook." CRC Press 2004.

***N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed. Wiley, Oct. 2002

Transformer volume and losses

*Optimum flux density calculation based on W. G. Hurley, W. H. Wolfle, and J. G. Breslin, "Optimized transformer design: inclusive of highfrequency effects," IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 651–659, Jul. 1998. **Wire design based on Litz wire structure: http://www.elektrisola.com/litz-wire/technical-data/formulas.html

Transformer volume

- a) Volume dependence frequency and power = 3[MVA].
- b) Volume dependence power and frequency = 1[kHz].

High Frequency Transformer

Electric model of High Frequency transformer. Parameters obtained from the design procedure*.

Lσ

Cintr1

Cinter

N1:N2

Example. Transformer 690V/3.3kV, 625kW

*S. Meier, et al. "Design Considerations for Medium-Frequency Power Transformers in Offshore Wind Farms." IEEE 2010.

DC link Capacitor

Proportional model in order to estimate the capacitor volume from the reference capacitor.*

$$Vol_{Cap} = \frac{C}{C_{ref}} \left(\frac{V_{DC}}{V_{ref}}\right)^2 \cdot Vol_{ref}$$

The capacitance is designed in order to limit the DC voltage ripple*.

$$C \propto \frac{I_{rms}}{V_{DC}f_{sw}}$$

*M. Preindl and S. Bolognani, "Optimized design of two and three level full-scale voltage source converters for multi-MW wind power plants at different voltage levels," in IECON 2011.

Filters

The Inductance is designed in order to limit the current ripple*,**.

$$L_{B2B} \propto \frac{V_{DC}}{I_{rms} f_{sw}} \qquad \qquad L_{MC} \propto \frac{V_{LL}^2}{f_{sw} \cdot P} \quad C_{MC} \propto \frac{P}{f_{sw} \cdot V_{LL}^2}$$

Proportional model in order to estimate the Inductor volume* and losses from the reference Inductor.

$$Vol_{induc.} = K_{ind} \cdot \left(L_{filter} \cdot I^{2}\right)^{3/4}$$

$$P_{loss_L} = \left(P_{cuRef} + P_{coreRef} \cdot \left(\frac{f_{ref}}{f}\right)^{\frac{(7\alpha-2)}{(12\beta-\alpha)}}\right) \cdot \left(\frac{Vol_{ind.}}{Vol_{Ref}}\right)$$

*M. Preindl and S. Bolognani, "Optimized design of two and three level full-scale voltage source converters for multi-MW wind power plants at different voltage levels," in IECON 2011.

**M. hamouda, F. Fnaiech, and K. Al-Haddad, "Input filter design for SVM Dual-Bridge matrix converters," in 2006 IEEE International Symposium on Industrial Electronics, vol. 2. IEEE, Jul. 2006.

AC/AC Converter - Topologies

to avoid over voltages.