Concept design verification of a semi-submersible floating wind turbine using coupled simulations

Fons Huijs EERA DeepWind'2014, Trondheim, 22 January 2014

Presentation outline

- Tri-Floater design
- Simulation approach
- Software and numerical model
- Simulation results
- Conclusions

Tri-Floater design

Wind turbine
 NREL 5MW

90 m

- Hub height above SWL
- Control system
 ECN
- Radius to column centre 36.0 m
- Column width 8.0 m
- Design draft 13.2 m
- Air gap to deck structure 12.0 m
- Displacement 3627 t
- Catenary mooring lines 3 x 750 m
- Chain diameter 100 mm

Tri-Floater design

		operational			survival
		rated	above rated	cut-out	parked
significant wave height	[m]	4.5	4.5	6.5	9.4
wave peak period	[s]	7.5 – 10	7.5 – 10	9-12	11 – 14
wind velocity at hub	[m/s]	11.4	14.0	25.0	42.7
current velocity	[m/s]	0-0.6	0-0.6	0-0.6	0-1.2

Operational inclination ≤ 10 deg
 Operational nacelle acceleration ≤ 3 m/s²
 Safety factor mooring line ≥ 1.7

Simulation approach

- Verify design requirements motions and mooring loads
- Concept design stage, so minimized computational effort
- Simulation duration: 1 hour
- Weibull distribution fitted to 50 % highest extremes
- Expected maxima determined for 3 hours by extrapolation
- Time step and seed dependency studied

Software and numerical model

- AQWA (Ansys)
 - Hydrodynamics (1st and 2nd order)
 - Mooring
- PHATAS (ECN)
 - Rotor aerodynamics
 - Rotor and tower structural dynamics
 - Drive-train and control systems
- Benchmarked with OC3 spar
- Hydrodynamic model validated with model tests

Software and numerical model

- Frequency domain motion analysis
- Coupled simulations in regular waves
- Model test in white noise

Simulation results

Simulation results

	operational			survival
	rated	above rated	cut-out	parked
floater inclination [deg]				
mean	3.5	2.9	1.7	3.4
3-hour extreme (90%)	7.4	8.5	6.1	11.1
nacelle hor. acceler. [m/s ²]				
mean	0.7	0.6	0.6	0.8
3-hour extreme (90%)	2.4	2.5	3.0	3.1

Conclusions

- Tri-Floater fulfills design criteria
- Low frequency motions are dominant
- Wave frequency motions are well predicted by uncoupled frequency domain motion analysis
- Such analysis is useful to assess global floater motions in early design stages and optimize the floater design
- Coupled simulations are however indispensible in later design stages

Your Partner

www.GustoMSC.com