

TR A7071- Unrestricted

Report

Wind Power R&D seminar – deep sea offshore wind – Trondheim, Norway, 20-21 January 2011

Author John Olav Tande (editor)

SINTEF Energy Research Energy Systems 2011-02-23

SINTEF Energi AS SINTEF Energy Research

Address: Postboks 4761 Sluppen ND-7465 Trondheim NORWAY

Telephone+47 73507200 Telefax:+47 73598354

energy.research@sintef.no www.sintef.no/energi Enterprise /VAT No: NO 939 350 675 MVA

KEYWORDS:

Wind turbine: Generators; Offshore; Grid connection; Met-ocean conditions; Operation and maintenance; Installation and sub-structures; Wind farm modelling

Report

Wind Power R&D seminar – deep sea offshore wind – Trondheim, Norway, 20-21 January 2011

VERSION Version

DATE 2011-02-23

AUTHOR(S)

John Olav Tande (editor)

CLIENT(S) Client(s) CLIENT'S REF. Client's reference

263

NUMBER OF PAGES/APPENDICES:

PROJECT NO. 12X650

ABSTRACT

This report includes the presentations from the wind power R&D seminar 20-21 January 2011 in Trondheim, Norway. The research and development on deep sea offshore wind power is addressed through invited presentations by industry and research. Emphasis is on presenting results from the strong Norwegian research programmes on offshore wind power.

The seminar has been arranged every year since 2004, and has been established as an important venue for the wind power sector in Norway and internationally. Presentations include plenary sessions with broad appeal and parallel sessions on specific technical themes:

a) New turbine and generator technology

- b) Grid connection and power system integration
- c) Met-ocean conditions
- d) Operation and maintenance
- e) Installation and sub-structures
- f) Wind farm modelling

Plenary presentations include offshore wind opportunities and success stories.

PREPARED BY

John Olav Tande

CHECKED BY

mont SIGNATURE

APPROVED BY

Knut Samdal

REPORT NO. TR A7071

ISBN 978-82-594-3470-8 CLASSIFICATION Unrestricted

SIGNATURE

CLASSIFICATION THIS PAGE Unrestricted

SINTEF

Table of contents

1.	PROGRAMME	4
2.	LIST OF PARTICIPANTS	6
PRES	SENTATIONS	
	ng Session – offshore wind opportunities	
Norwa	y as battery for Europe – prospects for supply of technology and services,	
Jon Du	gstad, Regional Director INTPOW	11
Potenti	ial supplies from Norwegian industry to offshore wind developments, Asle Lygre, Arena NOW	16

rotential supplies from rot vegian mausify to orishore while developments, riste 25 fre, ritena rot v	10
New research initiatives for advancing development of deep sea offshore wind technology,	
John Olav Giæver Tande, Director NOWITECH/Senior Scientist SINTEF Energy Research	20
Norwegian Met-Ocean Infrastructure for Offshore Wind Energy Research,	
Prof Joachim Reuder, University of Bergen	23
Plans for Havsul offshore wind farm, Tore Engevik, Vestavind Offshore	27

A1) New turbine technology

Development of the SWAY tower concept, Michal Forland, SWAY	31
Loads analysis of selected floating designs, Amy Robertson, NREL	35
Aluminium as a viable solution for offshore wind turbines, Simon Jupp, Hydro Aluminium	41
HiPRWind – large floating turbines for intermediate water depths, Jochen Bard, Fraunhofer IWES	46
Prospects of large floating vertical axis wind turbines, Uwe Schmidt Paulsen, Risø DTU	49
A2) New turbine technology	
Novel PM generators for large wind turbines, Alexey Matveev, SmartMotor	56
Novel methodology for fatigue design of wind turbine components of ductile cast iron,	
Prof gunnar Härkegård, NTNU.	62
New power electronic schemes for large wind turbines, Prof marta Molinas, NTNU	68
Standard for floating wind turbine structures, Johan Sandberg, DNV	76

B1) Power system integration

Offshore wind farm grid integration challenges, Sharifabadi Kamran, Statkraft	80
Offshore grid developments, Kjartan Hauglum, Statnett	84
Characterization and modelling of the power output variability of wind farms clusters,	
Prof Hans Georg Beyer, University of Agder	88
Supply of offshore wind energy to oil and gas installations, Harald Svendsen, SINTEF Energi AS	94
Balance management with large scale offshore wind integration, Post Doc Steve Völler, NTNU	97

B2) Grid connection

Challenges and design of offshore substations, Christer Olerud, Goodtech Projects & Services	101
Wind farm measurements and model validation, Prof Kjetil Uhlen, NTNU	104
Transient analysis of transformers and cables for offshore wind connection,	
Bjørn Gustavsen, SINTEF Energi AS	110

C1) Met ocean conditions

Conditions for Offshore Wind Energy Use, prof DetlevHeinemann, University of Oldenburg	116
Atmospheric profiling by lidar for wind energy research, Torben Mikkelsen, DTU Risø	120
From tower to tower, Svein Erling Hansen, Fugro OCEANOR	133
Effects of ocean waves, Alastair Jenkins, Uni Research	137

PROJECT NO .	REPORT NO.	VERSION	2 of 3
12X650	TR A7071	Version	

C2) Met-ocean conditions

Wave extremes in the Northeast Atlantic, Ole Johan Aarnes, met.no	146
The HyWind forecasting project, Birgitte Furevik, met.no	150
A comparison of Sonic Anemometer – and lidar-sensed wind velocity data at Frøya test site,	
PhD stud Fabio Pierella, NTNU	154
Design and operation of floating met-masts, Israel Pinto Grijuela, Grupo APIA XXI	167
Poster presentations of PhD students on offshore wind	174
D) Operations & Maintenance	
The German wind turbine reliability database (WMEP), Jochen Bard, Fraunhofer IWES	195
Framework for risk-based O&M planning for offshore wind turbines,	
Prof John D Sørensen, University of Aalborg	198
Cooperation on O&M and LCC analysis with Vattenfall, F. Besnard, Chalmers Uni. Technology	203
HSE challenges related to offshore renewable energy, Camilla Tveiten, SINTEF	207
E) Installation & sub-structures	
Coupled analysis of floating wind turbines, Elizabeth Passano, MARINTEK	211
The effects of breaking wave-induced currents, PhD stud Sung-Jin Choi, Uni of Stavanger	215
Effects of foundation modeling methodology on the dynamic response of offshore wind turbine	
support, PhD stud Eric van Buren, NTNU	219
F) Wind farm modelling	
Wakes in between wind parks, Idar Barstad, Uni Research	224
Wake models compared with measurements, Jennifer van Rij, IFE	227
Wind and wake modelling using CFD, Jens A Melheim, CMR GexCon	231
A model study of wind turbine interference, Prof Per Åge Krogstad, NTNU	234
Closing session – Success stories from Offshore Wind Research, Development and Deployment	
Carbon Trust's Offshore Wind Accelerator, Phil de Villiers, Carbon Trust	239
From ScanWind to GE – becoming a global player anchored in Mid-Norway, Martin Degen, GE	244
HyWind – A success story – A catalyst with Access as an example, Sjur Bratland, Statoil	247
Offshore wind farm forecasting and energy production, Jostein Mælan, StormGeo	252
Using research experiences in marine technology for advancing offshore wind technology,	
Prof. Torgeir Moan, NTNU	
Research gives results, Espen Borgir Christophersen, Research Council of Norway	262

	Wind Pow	er R&D seminar – deep sea offshore wind	
		Garden Hotel, Kjøpmannsgata 73, Trondhe	im, NORWAY
00.00	Thursday 20 January		
09.00			
	Opening session – offshore wind opport		ORCOWE
00.00		CH and Kristin Guldbrandsen Frøysa, CMR/N	ORCOWE
09.30	Opening and welcome by chair		
09.40	Norway as a battery for Europe – prospec	ts for supply of technology and services	
	Jon Dugstad, Regional Director INTPOW		
10.10	Potential supplies from Norwegian indust	ry to offshore wind developments	
	Asle Lygre, Arena NOW		
10.30		velopment of deep sea offshore wind technol	
		ECH / Senior Scientist SINTEF Energy Research	ch
11.00	Norwegian met/ocean infrastructure for o		
	Prof. Joachim Reuder, University of Berge	n	
11.30	Plans for Havsul offshore wind farm		
	Tore Engevik, Vestavind Offshore		
11.50	Summary and discussions by chair		
12.00	Lunch		
	Parallel sessions		
	A1) New turbine technology	B1) Power system integration	C1) Met-ocean conditions
	Chairs: Jasna B. Jakobsen, Uni. of	Chairs: Prof Tore Undeland, NTNU, Prof	Chairs: Prof Jochen Reuder, Uni. of
	Stavanger, Roy Stenbro, IFE	Kjetil Uhlen, NTNU	Bergen, Erik Berge, IFE
13.00	Introduction by Chair	Introduction by Chair	Introduction by Chair
13.10	Development of the SWAY tower	Offshore Wind farm Grid Integration	Conditions for Offshore Wind
	concept; Michal Forland, SWAY	challenges, Doggerbank;	Energy Use;
		Sharifabadi Kamran, Statkraft	Prof D Heinemann, Uni. Oldenburg
13.30	Loads analysis of selected floating	Offshore grid developments;	Atmospheric profiling by lidar for
	designs;	Kjartan Hauglum, Statnett	wind energy research;
	Amy Robertson, NREL		Torben Mikkelsen, DTU Risø
14.00	Aluminium as a viable solution for	Characterization and modelling of the	From tower to tower;
	offshore wind turbines;	power output variability of wind farms;	Svein Erling Hansen, Fugro Oceanor
	Simon Jupp, Hydro Aluminium	Prof Hans Georg Beyer, Uni of Agder	
14.20	HiPRWind – large floating turbines for	Supply of offshore wind energy to oil and	The effects of ocean waves on
	intermediate water depths;	gas installations;	offshore wind generators;
	Jochen Bard, Fraunhofer IWES	Harald Svendsen, SINTEF	Alastair Jenkins, Uni Research
14.40	Prospects of large floating vertical axis	Balancing offshore wind;	Large Eddy Simulation;
	wind turbines;	Post Doc Steve Völler, NTNU	Alla Sapronova, Uni Research
	Uwe Schmidt Paulsen, Risø DTU		
15.00	Refreshments		
	A2) New turbine technology	B2) Grid connection	C2) Met-ocean conditions
	Chairs: Conrad Carstensen, Uni. of	Chairs: Prof Tore Undeland, NTNU, Prof K	Chairs: Prof Jochen Reuder, Uni. of
	Stavanger, BW Tveiten, SINTEF	Uhlen, NTNU	Bergen, Erik Berge, IFE
15.30	Introduction by Chair	Introduction by Chair	Introduction by Chair
15.35	Novel PM generators for large wind	Challenges and design of offshore	Wave extremes in the Northeast
	turbines;	substations;	Atlantic;
	Alexey Matveev, SmartMotor	C. Olerud, Goodtech Projects & Services	Ole Johan Aarnes, met.no
15.55	Novel methodology for fatigue design	Voltage control of wind power plants with	The HyWind forecasting project;
_0.00	of wind turbine components of ductile	DFIG;	Birgitte Furevik, met.no
	cast iron; Prof G Härkegård, NTNU	Jorge Martínez García, Vestas	
16.15	New power electronic schemes for large	Wind farm measurements and model	A comparison of sonic and lidar-
_0.10	wind turbines;	validation;	sensed wind velocity;
	Prof Marta Molinas, NTNU	Prof Kjetil Uhlen, NTNU	PhD stud Fabio Pierella, NTNU
16.35	Need for international standards on	Transient analysis of transformers and	Design and operation of floating
10.55	floating offshore wind turbines;	cables for offshore wind connection;	met-masts;
	Johan Sandberg, DNV	Bjørn Gustavsen, SINTEF	Israel Pinto Grijuela, Grupo APIAXXI
16.55	Closing by Chair	Closing by Chair	Closing by Chair
17.00		resentation of PhD students on offshore win	
17.00	roster session with remeshinents and pr	esentation of File students on onshore win	u la
19.00	Dinner		
19.00	Uniner		

		wer R&D seminar – deep sea offshore wind ral Garden Hotel, Kjøpmannsgata 73, Trond			
	Friday 21 January	al Galden Hotel, Njøpmannsgata 75, mond			
	Parallel sessions				
	D) Operations & maintenance	E) Installation & sub-structures	F) Wind farm modelling		
	Chairs: Jørn Heggset, SINTEF, Hans	Chairs: Prof Geir Moe, NTNU, Prof Ivar	Chairs: Prof Trond Kvamsdal, NTNU,		
	Georg Beyer, Uni. of Agder	Langen, Uni of Stavanger	Lene Sælen, CMR Gexcon		
09.00	Introduction by Chair	Introduction by Chair	Introduction by Chair		
09.05	The German wind turbine reliability database (WMEP); Jochen Bard, Fraunhofer IWES	Coupled analysis of floating wind turbines; Elizabeth Passano, MARINTEK	Wakes between large wind farms; Idar Barstad, Uni Research		
09.25	Framework for risk-based O&M	The effects of breaking wave-induced	Wake models compared with		
	planning for offshore wind turbines;	currents;	measurements;		
	Prof John D Sørensen, Uni. of Aalborg	PhD stud Sung-Jin Choi, Uni of Stavanger	Jennifer van Rij, IFE		
09.45	Cooperation on O&M and LCC	Analysis of piled foundations by means	Wind and wake modelling using CFD;		
	analysis with Vattenfall;	of various soil models;	Jens A Melheim, CMR GexCon		
10.05	F. Besnard, Chalmers Uni. Technology	PhD stud Eric van Buren, NTNU			
10.05	HSE challenges of installing and	Installation of bottom supported wind	A model study of wind turbine		
	operating offshore wind farms;	turbines at Sheringham Shoal;	interference; Prof Per Åge Krogstad,		
10.25	Camilla Tveiten, SINTEF	Jan Ingar Knutsen, Master Marine	NTNU Closing by Chair		
10.25	Closing by Chair Refreshments	Closing by Chair	Closing by Chair		
10.50		Offshore Wind Research, Development and	Donloymont		
	-	TECH and Kristin Guldbrandsen Frøysa, CMR			
11.00	Introduction by Chair				
11.00	Carbon Trust's Offshore Wind Accelerat	or			
11.05	Phil de Villiers, Carbon Trust				
11.25	From Scanwind to GE – becoming a glol	bal plaver anchored in Mid-Norway			
	Martin Degen, GE				
11.45	HyWind – A success story – A catalyst w	ith Access as an example,			
	Sjur Bratland, Statoil				
12.05					
	Jostein Mælan, StormGeo				
12.25	Using research experiences in marine technology for advancing offshore wind technology				
	Prof. Torgeir Moan, NTNU				
12.45	Research gives results				
	Espen B Christophersen, Research Council of Norway				
13.05	Closing by Chair				
13.10	Lunch				

List of participants Wind Power R&D Seminar – Deep Sea Offshore Wind 20 – 21 January 2011

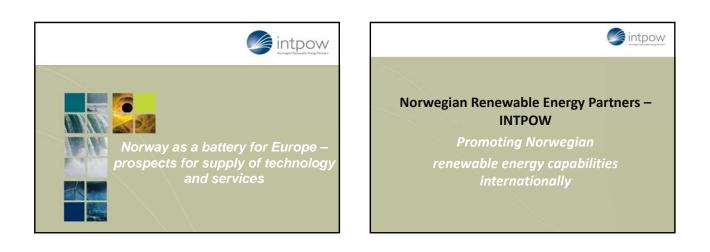
Name	Company	Country
Aarnes, Ole Johan	Meteorologisk institutt	NO
Abrahamsen, Odd Henning	Lyse Produksjon AS	NO
Albrechtsen, Eirik	SINTEF Technology and Society	NO
Alterskjær, Steinar	Statoil	NO
Amdahl, Jørgen	NTNU	NO
Arana, Iván	DONG Energy	DK
Armada, Sergio	SINTEF Materials and Chemistry	NO
Arntsen, Mikael	ChapDrive AS	NO
Bakken, Stein Arne	Fagbladet Energiteknikk/Elektromedia AS	NO
Bard, Jochen	Fraunhofer IWES	DE
Barstad, Idar	Uni Research	NO
Bech, Knut	Statoil	NO
Berge, Erik	IFE	NO
Besnard, Francois	Chalmers University of Technology	SE
Beyer, Hans Georg	Universitetet i Agder	NO
Bjartnes, Anders	Norsk Klimastiftelse	NO
Bjørgan, Roger	SINTEF	NO
Bjørgum, Astrid	SINTEF Materials and Chemistry	NO
Blanke, Mogens	DTU	DK
Bratland, Sjur	Statoil	NO
Bredmose, Henrik	DTU Mechanical Engineering	DK
Briskeby, Stein Trygve	Statoil	NO
Brommundt, Matthias	Fraunhofer IWES	GE
Bull-Berg, Heidi	SINTEF Technology & Society	NO
Busmann, Hans Gerd	Fraunhofer IWES	DE
Carstensen, Conrad	University of Stavanger	NO
Choi, Sung-Jin	University of Stavanger	NO
Christophersen, Espen B	Research Council of Norway	NO
Cox, Kevin	NTNU	NO
D'Arco, Salvatore	NTNU	NO
Dahlhaug, Ole Gunnar	NTNU	NO
de Vaal, Jacobus	NTNU CeSOS	NO
de Villiers, Phil	Carbon Trust	UK
Degen, Martin	GE	NO
Dirdal, Anders	Angle Wind	NO
Dugstad, Jon	INTPOW	NO
Eliassen, Lene	University of Stavanger	NO
Endegnanew, Atsede	SINTEF Energi AS	NO
Engevik, Tore	Vestavind Offshore AS	NO
Eriksen, Pål Egil	NTNU	NO
Eriksson, Sandra	Division for electricity	SE
Eriksson, Svein Anders	Petroleumstilsynet	NO
Etemaddar, Mahmoud	NTNU CeSOS	NO
Fageraas, Arve	Lyse Produksjon AS	NO
Fasting, Einar	SINTEF Energi AS	NO
Faugstad, Erling	Statnett SF	NO
Finden, Per	IFE	NO
Forland, Michal	SWAY	NO
Frøyd, Lars	NTNU	NO
Furevik, Birgitte Rugaard	Meteorologisk institutt	NO
García, Jorge Martínez	Vestas	DK
Gjendal, Andreas	4Subsea	NO
Gjerde, Sverre Skalleberg	NTNU	NO
Godal, Tord	Statoil	NO
Gravdahl, Arne Reidar	WindSim AS	NO
Gregersen, Thomas	Statnett	NO
Grijuela, Israel Pinto	APIA XXI	ES

Culbrandson Kristin Frayes		NO
Gulbrandsen, Kristin Frøysa	NORCOWE/CMR	NO NO
Gundersen, Joakim	Nordnorsk Havkraft	-
Gustavsen, Bjørn	SINTEF Energi AS	NO
Haarberg, Per Olav	ChapDrive AS	NO
Hagen, Torbjørn Ruud	NTNU	NO
Haglerød, Klaus Kristian	Statoil	NO
Hallen, Håkon	SINTEF Raufoss Manufacturing	NO
Hameed, Zafar	NTNU	NO
Hamre, Liv	DNV	NO
Hang, John	Statnett SF	NO
Hansen, Martin O.L.	DTU Mechanics	DK
Hansen, Svein Erling	Fugro OCEANOR	NO
Hanson, Tor David	Statoil	NO
Hanssen, Jan Erik	1-Tech	BE
Härkegård, G.	NTNU	NO
Hårklau, Thomas	Kitemill	NO
Hasager, Charlotte	Risø DTU	DK
Haug, Roald	Bosch Rexroth AS	NO
Hauglum, Kjartan	Statnett	NO
Hauso, Olav	Petroleumstilsynet	NO
Heggset, Jørn	SINTEF Energi AS	NO
Heidenreich, Sara	NTNU	NO
Heinemann, D.	Uni. Oldenburg	DE
Hernández-Brito, José Joaquín	PLATAFORMA OCEÁNICA DE CANARIAS	ES
Hernando, Daniel Huertas	SINTEF Energi AS	NO
Hjelmervik, Karina	Høgskolen i Vestfold	NO
Hjetland, Ann Ingeborg	OED	NO
Hjøllo, Magnar	Ambientor AS	NO
Hofmann, Matthias	SINTEF Energi AS	NO
Høiseth, Mette Kjelstad	SINTEF Energi AS	NO
Holdahl, Runar	SINTEF	NO
Holm, Kristian	GE Wind Energy AS	NO
Hopstad, Anne Lene Haukanes	DNV	NO
Hove, Joakim	Statoil	NO
Hurdle, David	ARCADIS Marknesse	NL
lki, Norihiko	AIST	JP
Jakobsen, Jasna Bogunovic	Stavanger University	NO
Jenkins, Alastair	Uni Computing	NO
Jong Ku Lee	RIST	KR
Jupp, Simon	Hydro Aluminium Rolled Products GmbH	DE
Kanestrøm, Mette Kristine	Lyse Produksjon AS	NO
Karimirad, Madjid	NTNU	NO
Kerckhoven, Jos van	ARCADIS Hoorn NH	NL
Kleppe, Gunnar	Prekubator TTO AS	NO
Knagenhjelm, Marius	Olje- og Energidepartementet	NO
Knain, Merete	Enova SF	NO
Knudsen, Ole Ø.	SINTEF	NO
Knutsen, Jan Ingar	Master Marine	NO
Korpås, Magnus	SINTEF Energi AS	NO
Krogstad, Per Åge	NTNU	NO
Krokstad, Jørgen	Statkraft	NO
Kvamsdal, Trond	NTNU	NO
Kvernevik, Edgar	Kvernevik Engineering AS	NO
Kvilhaug, Frode Andres	Statoil ASA	NO
Langen, Ivar	UiS	NO
Låte, Leiv		NO
	Fedem Technology AS	
-	Fedem Technology AS Siemens	
Laukhammer, Vegard	Fedem Technology AS Siemens EDF R&D	NO FR
Laukhammer, Vegard Le Maître, Christelle	Siemens EDF R&D	NO FR
Laukhammer, Vegard Le Maître, Christelle Lee, Seri	Siemens EDF R&D Nanyang Technological University	NO
Laukhammer, Vegard Le Maître, Christelle	Siemens EDF R&D	NO FR SG

Lundteigen, Tor Einar	Sogn og Fjordane Fylkeskommune	NO
Luxcey, Neil	MARINTEK	NO
Lygre, Asle	Arena NOW	NO
Mathisen, Jan-Petter	Fugro OCEANOR	NO
Matveev, Alexey	SmartMotor	NO
Melheim, Jens A	CMR Gexcon	NO
Merz, Karl	NTNU	NO
Midthun, Kjetil	SINTEF	NO
Mikkelsen, Torben	DTU Risø	DK
Moan, Torgeir	NTNU	NO
Moe, Geir	NTNU	NO
Molinas, Marta	NTNU	NO
Mostad, Helle Brit	Statoil	NO
Muskulus, Michael	NTNU	NO
Myhre, Stine Aas	Statoil ASA	NO
Mælan, Jostein	StormGeo	NO
Nakken, Torgeir	Statoil	NO
Nedrebø, Øyvind	Vestavind Offshore AS	NO
Nerland, Geir-Kjetil	ChapDrive AS	NO
Nesheim, Sveinung	OWEC Tower	NO
Netland, Øyvind	NTNU	NO
Ng Yin Kwee, Eddie	Nanyang Technological University	SG
Nguyen, Trinh Hoang	University of Agder	NO
Niedzwecki, John	Texas A&M University	USA
Nielsen, Finn Gunnar	Statoil / UiB	NO
Nilssen, Robert	NTNU	NO
Nordanger, Knut	NTNU, Inst. for matematiske fag	NO
Nordsteien, Inge	SmartMotor	NO
Nygaard, Dagfinn	Angle Wind	NO
Nygaard, Tor Anders	IFE	NO
Nyhammer, Finn K.	Kjeller Vindteknikk AS	NO
Nysveen, Arne	NTNU	NO
Oggiano, Luca	IFE	NO
Olerud, Christer	Goodtech Projects & Services AS	NO
Olimb, Idunn	Statoil ASA	NO
Onarheim, Jan	NTNU	NO
Ormberg, Harald	MARINTEK	NO
Owens, Garrett	Texas A&M	USA
Pascual Vergara, Javier	Acciona Energiac	ES
Passano, Elizabeth Anne	MARINTEK	NO
Paulsen, Uwe Schmidt	Risø DTU	DK
Pedersen, Morten	NTNU CeSOS	NO
Pettersen, Bernt Øyvind	Rambøll Norge AS	NO
Pierella, Fabio	NTNU - IEPT	NO
Pimenta de Miranda, Wilfried	Multiconsult	NO
Pramayon, Pierre	EDF R&D	FR
Quesnel, Louis	Fraunhofer IWES	DE
Qvist, Jacob	4Subsea	NO
Ramachandran, Gireesh Kumar V	DTU	DK
Reiso, Marit	NTNU	NO
Reuder, Joachim	University of Bergen	NO
Ringheim, Nils Arild	SINTEF Energi AS	NO
Roaldset, Johanna	Statnett SF	NO
Robertson, Amy	National Renewable Energy Laboratory	USA
Rui, Øyvind	Statnett	NO
Ruiz, Alejandro Garcés	NTNU Wind Sim A C	NO
Rømma, John Olaf	WindSim AS	NO
Salthaug, Marie	NTNU	NO
O an all and taken	Det Mensler Mensler	
Sandberg, Johan	Det Norske Veritas	NO
Sandberg, Johan Sandvik, Bjarne Sapronova, Alla	Det Norske Veritas Petroleumstilsynet Uni Research	NO NO NO

Sharifabadi , Kamran	Statkraft Energi AS	NO
Singstad, Ivar	Innovasjon Norge	NO
Sivertsvoll, Børre J.	Siemens PTD	NO
Skjerve, Annbjørg	Aker Stord	NO
Sixtensson, Carl	DNV	NO
Skjølsvik, Kjell Olav	Enova SF	NO
Skote, Martin	Nanyang Technological University	SG
Smedsrud, Espen Aas	Multiconsult	NO
Stenbro, Roy	IFE	NO
Stenstadvold, Kjell	Norsk Hydro ASA	NO
Stettner, Martin	GE Global Research	GE
Straume, Harald	Bergen Group Rosenberg	NO
Svendgård, Ole	VIVA testsenter	NO
Svendsen, Harald G.	SINTEF Energi as	NO
Sælen, Lene	GexCon AS	NO
Sørensen, Asgeir	NTNU	NO
Sørensen, John Dalsgaard	Univ. Of Aalborg	DK
Sørheim, Hans Roar	CMR	NO
Tande, John Olav	SINTEF Energi AS	NO
Tasar, Gursu	NTNU	NO
Thomassen, Paul	NTNU	NO
Thomsen, Knud Erik	ChapDrive AS	NO
Tiusanen, Risto	VTT Technical research centre of Finland	FI
Torgnes, Torbjørn	Nordnosk Havkraft	NO
Trötscher, Thomas	Statnett SF	NO
Tveiten, Bård Wathne	SINTEF M&C	NO
Tveiten, Camilla	SINTEF	NO
Tørset, John	Bosch Rexroth AS	NO
Tørud, Anders	Windsea AS	NO
Uhlen, Kjetil	NTNU	NO
Ulriksen, Thorbjørn	Rambøll Norge AS	NO
Undeland, Tore	NTNU	NO
Undheim, Ove	Kjeller Vindteknikk	NO
Valavi, Mustafa	NTNU	NO
van Buren, Eric	NTNU	NO
van Bussel, Gerard	TU Delft	NL
van Rij, Jennifer	IFE	NO
Vedøy, Mads Arild	Marine Aluminium AS	NO
Vrana, Til Kristian	NTNU	NO
Völler, Steve	NTNU	NO
Wale, Erik	Det Norske Veritas	NO
Welde, Håkon	TrønderEnergi Invest	NO
Zachlod, Damien	EDF Energy	FR
Zwick, Daniel	NTNU	NO

Opening Session – offshore wind opportunities

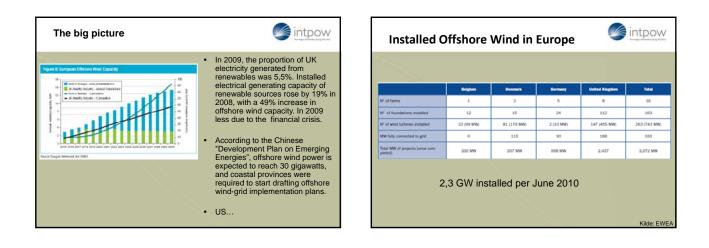

Norway as a battery for Europe – prospects for supply of technology and services Jon Dugstad, Regional Director INTPOW

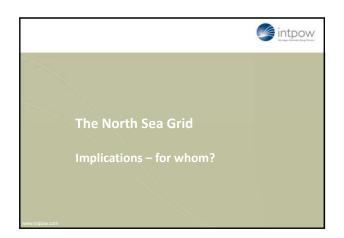
Potential supplies from Norwegian industry to offshore wind developments, Asle Lygre, Arena NOW

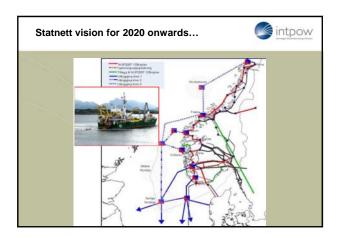
New research initiatives for advancing development of deep sea offshore wind technology, John Olav Giæver Tande, Director NOWITECH / Senior Scientist SINTEF Energy Research

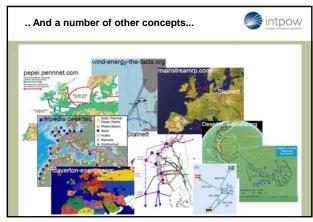
Norwegian met/ocean infrastructure for offshore wind energy research, Prof. Joachim Reuder, University of Bergen

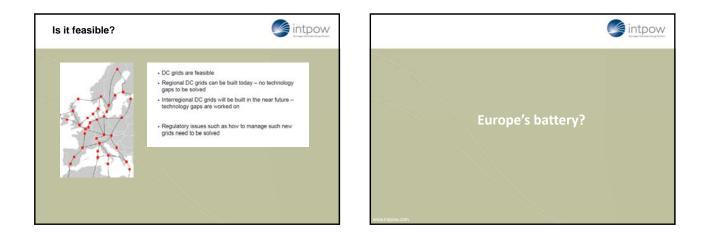
Plans for Havsul offshore wind farm, Tore Engevik, Vestavind Offshore

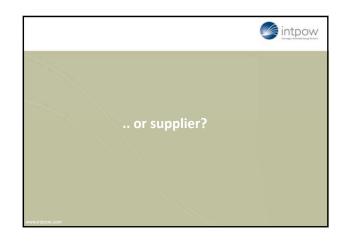






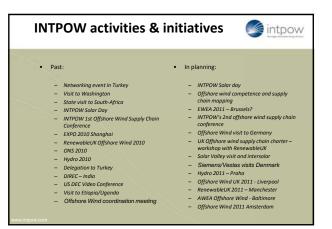


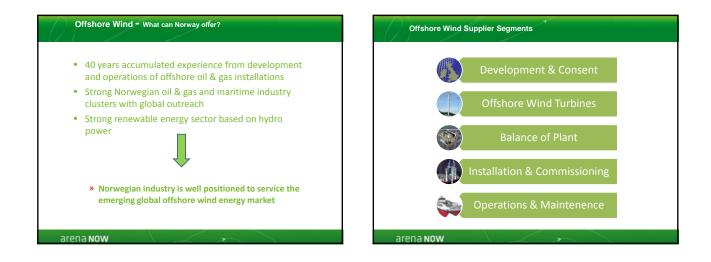




The Norwegian benefits

intpow

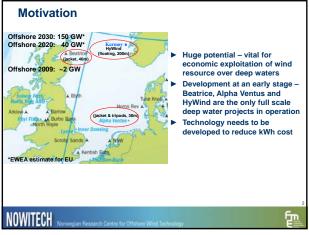

- Balancing the Norwegian power demand
 Increasing value of offshore wind power generation
- Better utilisation of hydro power storage capacity
 Enhancing value of generation facilities
- Electrification of the oil & gas installations
 Competitive?
- Trading opportunities
- Stratkraft already the largest cross-border trader of power in Europe
- Supply of products and services
 - Cable
 - Engineering
 - Umbilicals electricals

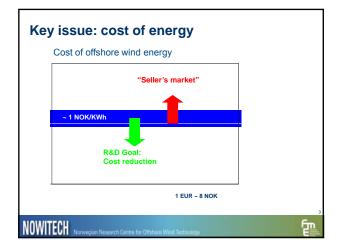


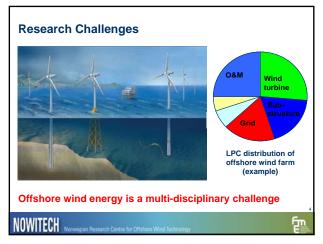
Offshore Wind Turbines – Examples of Potential Supplies

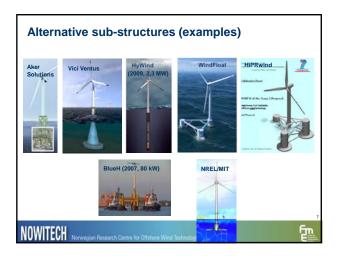
- Complete wind turbines
- Generators
- Towers
- Moulds for blade casting
- Systems/sensors related to pitch-control
- Nacelle auxilliary systems

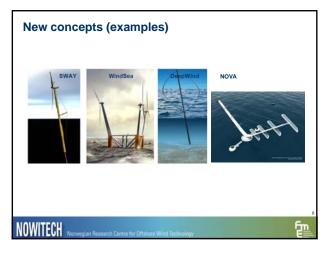
arena **NOW**

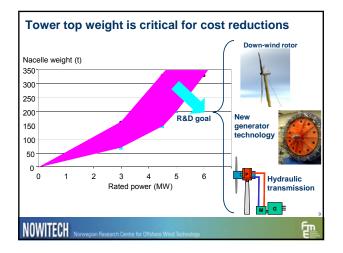


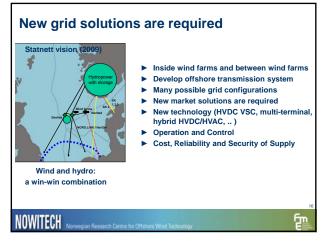


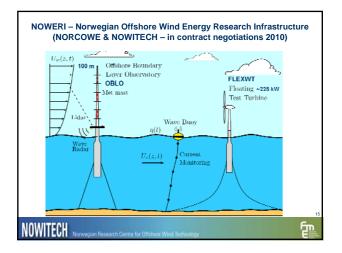


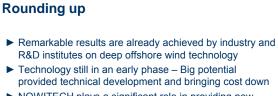


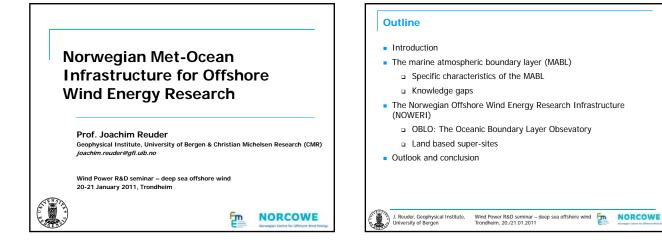


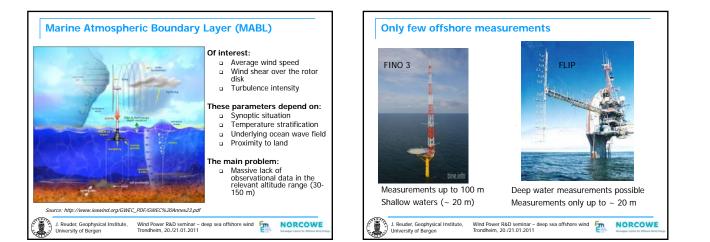


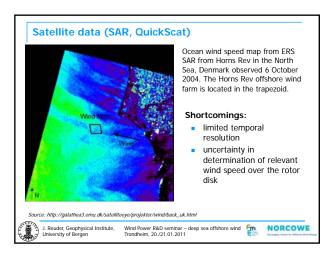


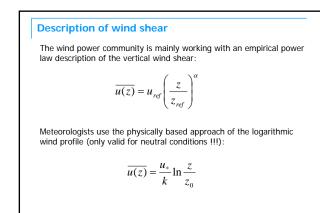


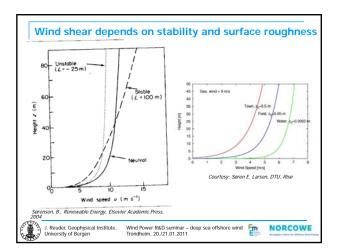


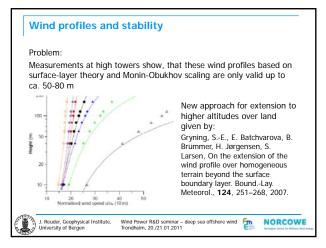


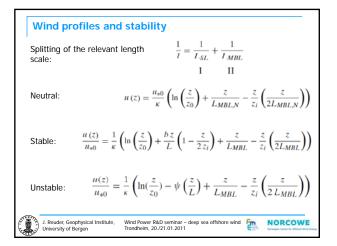


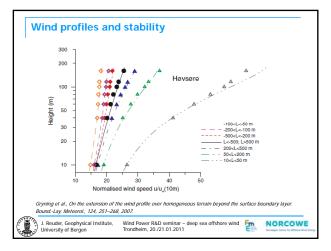

```
NOWITECH plays a significant role in providing new
knowledge as basis for industrial development and cost-
effective offshore wind farms at deep sea
```

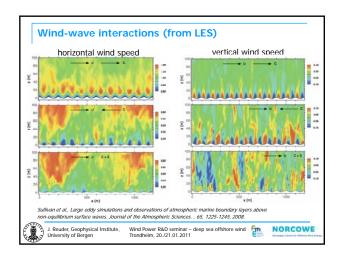

Cooperation between research and industry is essential for ensuring relevance, quality and value creation

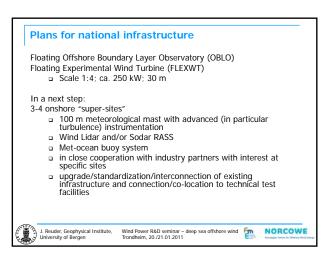


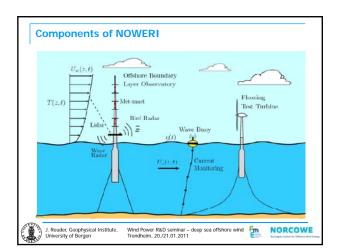


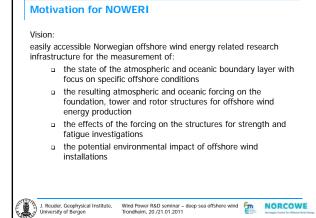


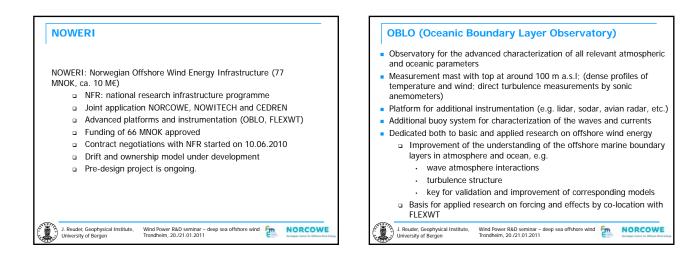

Wind Power R&D seminar – deep sea offshore wind Trondheim, 20./21.01.2011

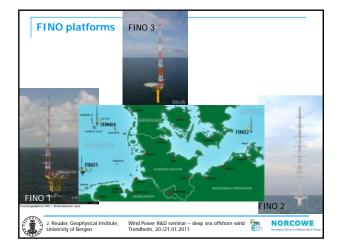

J. Reuder, Geophysical Institute, University of Bergen

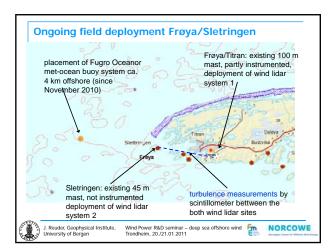


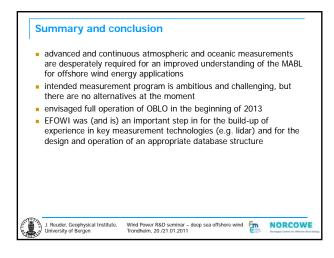


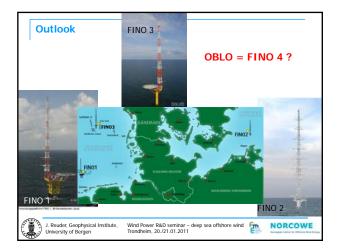




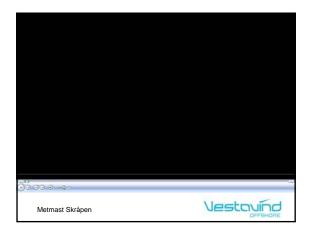


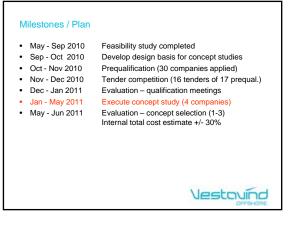




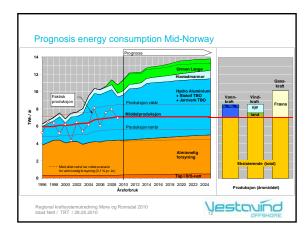


FI⁴NO
Floating Infrastructure for Norwegian Offshore Wind Energy Research
Floating Instrumentation for Norwegian Offshore Wind Energy Research
© M. Durstewitz, 2010





Vestavind


Tender competition process

- Prequalification announced on TED / Doffin
- Prequalified candidates received ITT
- Shortlisting of candidates
- Clarifications with shortlisted candidates
- Recommendation
- Selection (4 companies/Industrial Groups)

Vestovind

VESTAVIND Offshore's "Kinderegg"

- Energy crisis in Mid-Norway

- Part of permanent solution
- New production renewable energy from 2013/2014
- Local energy production SHORT TRAVELLED!

Climate friendly

- Renewable energy
- Short travelled
- Paradigm shift, from Onshore to Offshore approach

New industrial approach

- New innovative solutions based on proven technology
 Capitalize on offshore Petromarine core competence
- Cost-effective, sound solutions

Vestavind Offshore's goals in offshore wind:

- Create tomorrows global solutions in offshore wind together with the industry in a 'wind wind' approach
- Utilize unique offshore Petromarine competence in marine renewable energy production
- New market opportunities for the industry

A1) New turbine technology

Development of the SWAY tower concept, Michal Forland, SWAY

Loads analysis of selected floating designs, Amy Robertson, NREL

Aluminium as a viable solution for offshore wind turbines, Simon Jupp, Hydro Aluminium

HiPRWind – large floating turbines for intermediate water depths, Jochen Bard, Fraunhofer IWES

Prospects of large floating vertical axis wind turbines, Uwe Schmidt Paulsen, Risø DTU

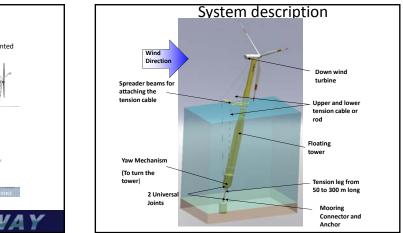
Sway business strategy:

<u>The four key factors for success will be qualification</u> <u>of the technology through:</u>

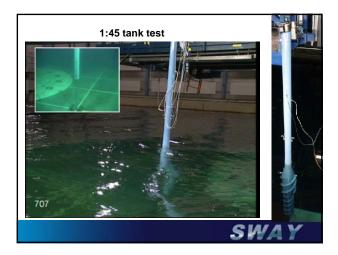
- 1:6 floating model Q1 2011
- Full scale pilot 2013
- Thereafter use the existing industry and their industrial and financial muscles by licensing the technology
- Use local manufacturers in the major home markets

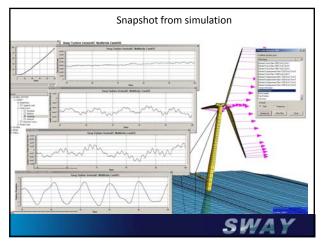
Sway history in short

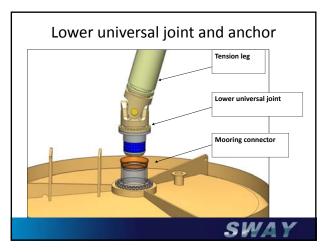
- Sway origins from oil and subsea industry
- 2002-07 Developed a fully integrated simulation tool
- 2007: €20M equity raise. Statoil and Lyse new co-owners
- 2007: Verification of scaled prototype in wave tank
- 2009: Sway received concession floater
- 2010: Split of Sway into two separate companies.
- Q1 2011: Deployment of 1:6 scale floater

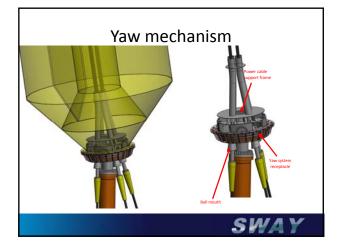

SN

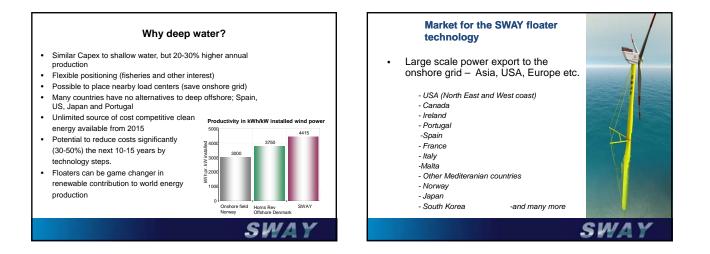
Water depth and weather conditions

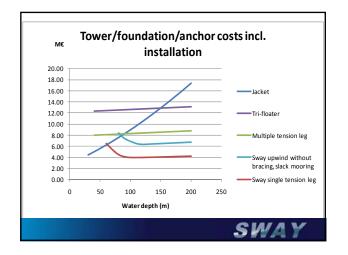

- 60 300m+
- Designed for extreme weather conditions (North Sea).
- 100 year significant wave height Hs=17m
- Max single wave H=30m
- 20 years service fatigue life (60 years actual life)

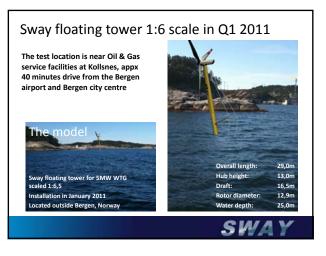


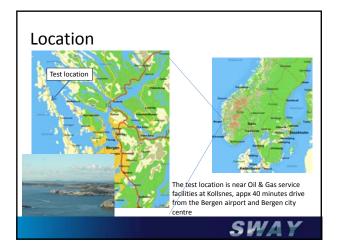


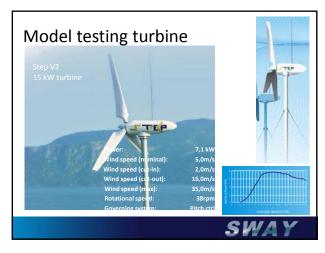


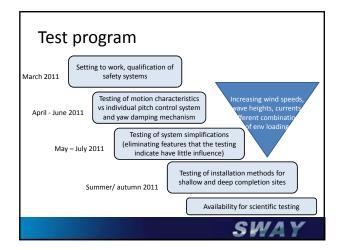


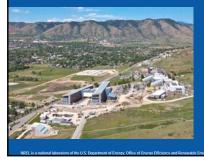




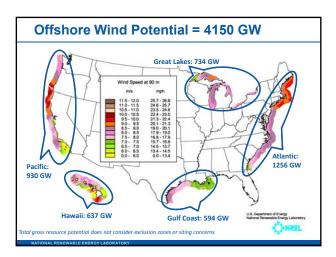


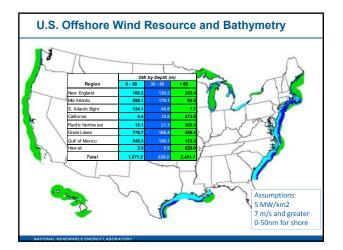


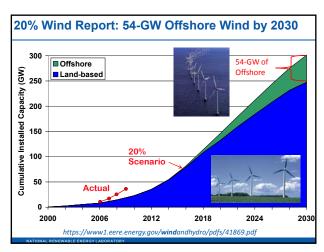




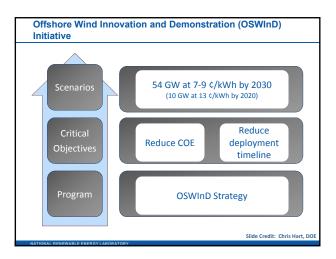
Offshore Wind Power in the United States

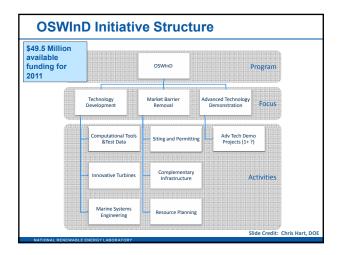


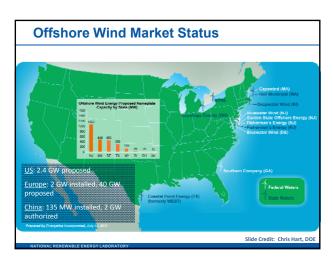

Wind Power R&D Seminar -Deep Sea Offshore Wind Amy Robertson January 20, 2011

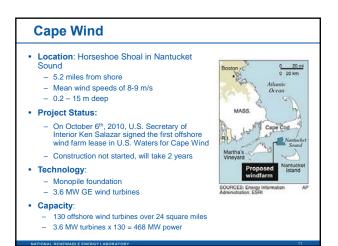

Outline

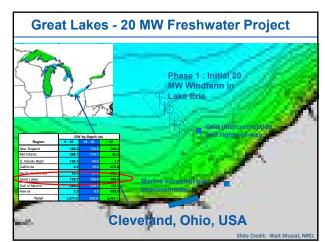
- U.S. government priorities
- U.S. Offshore wind resource
- Roadmap for developing resource
- DOE's role
- Offshore wind projects in the U.S.
- NREL work in offshore wind
 International Collaborations
 - Design concept loads analysis











Cleveland 20-MW Offshore Wind Project Uccation: Site is 35 miles off downtown Cleveland Shallowest of the Great Lakes – maximum depth in central basin is 24-m Potentially first freshwater project Surface ice floe is a unique design condition Ice research studies are planned

Wind/Wave Hybrid Technology - WindWaveFloat

- Principle Power is a U.S.-based technology developer focused on the deep-water offshore wind energy market.
- WindFloat is Principle Power's semi-submersible floating wind turbine design.
- Full-scale prototype is expected to be deployed off the north coast of Portugal in mid-2011
- WindWaveFloat modified version of WindFloat which adds wave power take-off (PTO) mechanisms
 - Received DOE funding for planning, concept design, physical modeling & wave tank testing, and pilot-scale testing of the WindWaveFloat device in ocean waters.

Slide Credit: University of Mair

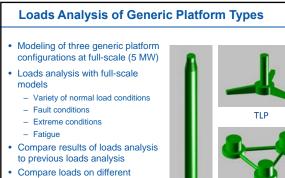
DeepCwind Project – Maine, USA Deep Water >60-m • New Technology Development Initiative for floating wind technology • Funding -\$25M US Dollars • 1/50th Scale Model Testing • 1/3 scale open ocean testing • Goal: Develop engineering tools to enable the design of optimized full-scale systems.

DeepCwind - Wind/ Wave 1/50th Scale Model Testing 1/50th Scale models will be tested at Marin facility 3 generic platforms Models are based upon NREL 5MW reference turbine Over 15 scaling parameters considered to maximize full scale and 1/3 scale relevance Model testing is scheduled for April 2011. Pitch control (inactive for

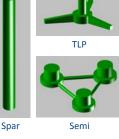
NREL Work in Offshore Wind

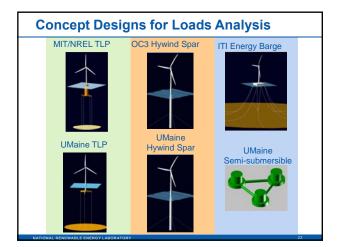
· Improving our simulation tool, FAST

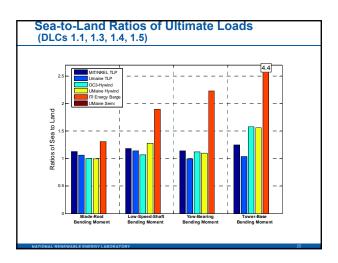
now)


- Modularizing code, improving ability to interface to other codes
- Improving wind/water loading formulations
- Adding functionality to model a variety of offshore wind turbine designs
- Validating code through test data
- · Collaborating on a number of international projects
- Performing design conceptual studies

FAST with AeroDyn and HydroDyn


- Structural-dynamic model for horizontal-axis turbines:
 - Coupled to AeroDyn, HydroDyn, and controller
 - for aero-hydro-servo-elastic simulation Evaluated by Germanischer Lloyd WindEnergie
- Turbine Configurations
 - HAWT
 - 2 or 3-bladed
 - Upwind or downwind
 - Land-based or offshore
 - Offshore monopiles or floating - Rigid or flexible foundation


International Collaborations Project Name Description Floating offshore wind project in U.S. – includes scale model testing and 1/3 scale demonstration project DeepCWind Collaboration to share information on a variety of wind-turbine Risø related topics IEA Offshore Codes Comparison Collaboration, Continued – jacket OC4 and semi (co-leading project) ORECCA EU development of offshore renewables roadmap Norwegian research group on deep offshore wind. Strong Nowitech emphasis on supporting PhD and post-doctoral research. 5-yr project to help development of deep-water offshore wind. HiPRWind Will deploy a 1-MW demonstration turbine. Examination of vertical-axis offshore WT DeepWind UpWind Assessing requirements for design of very large turbines


•	Compare loads on different
	platform types to land-based
	system

DLC	LC Winds		Waves			Controls / Events		Load
	Model	Speed	Model	Height	Direction			Factor
1) Pc	wer Pr	oduction						
	NTM	V _{in} < V _{hub} < V _{out}	NSS	$H_s = E[H_s V_{hub}]$	β = 0°	Normal operation	U	1.25×1.2
	NTM	V _{in} < V _{hub} < V _{out}	NSS	$H_s = E[H_s V_{hub}]$	$\beta = 0^{\circ}$	Normal operation	F	1.00
	ETM	V _{in} < V _{hub} < V _{out}	NSS	$H_s = E[H_s V_{hub}]$	$\beta = 0^{\circ}$	Normal operation	U	1.35
	ECD	$V_{hub} = V_r, V_r \pm 2m/s$	NSS	$H_s = E[H_s V_{hub}]$	$\beta = 0^{\circ}$	Normal operation; ±∆ wind dir'n.	U	1.35
1.5	EWS	V _{in} < V _{hub} < V _{out}	NSS	$H_s = E[H_s V_{hub}]$	$\beta = 0^{\circ}$	Normal operation; ±∆ ver. & hor. shr.	U	1.35
1.6a	NTM	V _{in} < V _{hub} < V _{out}	ESS	$H_s = 1.09 \times H_{s50}$	$\beta = 0^{\circ}$	Normal operation	U	1.35
2) Po	wer Pr	oduction Plus Occurrence	of Fault					
2.1	NTM	$V_{hub} = V_r, V_{out}$	NSS	$H_s = E[H_s V_{hub}]$	$\beta = 0^{\circ}$	Pitch runaway	U	1.35
2.3	EOG	$V_{hub} = V_r, V_r \pm 2m/s, V_{out}$	NSS	$H_s = E[H_s V_{hub}]$	$\beta = 0^{\circ}$	Loss of load → Shutdown	U	1.10
6) Pa	rked (lo	iling)						
6.1a	EWM	V _{hub} = 0.95×V ₅₀	ESS	$H_{s} = 1.09 \times H_{s50}$	$\beta = 0^\circ, \pm 30^\circ$	Yaw = 0°, ±8°	U	1.35
6.2a	EWM	V _{hub} = 0.95×V ₅₀	ESS	$H_s = 1.09 \times H_{s50}$	$\beta = 0^{\circ}, \pm 30^{\circ}$	Loss of grid \rightarrow -180° < Yaw < 180°	U	1.10
6.3a	EWM	V _{hub} = 0.95×V ₁	ESS	$H_{s} = 1.09 \times H_{s1}$	$\beta = 0^{\circ}, \pm 30^{\circ}$	Yaw = 0°, ±20°	U	1.35
') Pa	rked (lo	lling) and Fault						
7.1a	EWM	$V_{hub} = 0.95 \times V_1$	ESS	$H_{s} = 1.09 \times H_{s1}$	$\beta = 0^{\circ}, \pm 30^{\circ}$	Seized blade; Yaw = 0°, ±8°	U	1.10

Summary of Properties: 6 Floating Systems						
	MIT/NREL TLP	UMaine TLP	OC3-Hywind Spar Buoy 320 m Depth	OC3-Hywind Spar Buoy 200 m Depth	ITI Energy Barge	UMaine Semi- Submersible
Diameter or width × length (m)	18	15	6.5 to 9.4 (is tapered)	6.5 to 9.4 (is tapered)	40 × 40	13.5 and 20 (diameters)
Draft (m)	47.89	24	120	120	4	20
Water displacement (m ³)	12,180	2,767	8,029	8,029	6,000	6232
Mass, including ballast (kg)	8,600,000	774,940	7,466,000	7,466,000	5,452,000	5,591,400
CM location of the platform below SWL (m)	40.61	19.72	89.92	89.92	0.2818	5.11
Roll inertia about CM(kg • m ²)	571,600,000	150,780,000	4,229,000,000	4,229,000,000	726,900,000	3,062,000,000
Pitch inertia about CM (kg • m ²)	571,600,000	150,780,000	4,229,000,000	4,229,000,000	726,900,000	3,062,000,000
Yaw inertia about CM (kg • m ²)	361,400,000	98,850,000	164,200,000	164,200,000	1,454,000,000	3,673,000,000
Number of mooring lines	8 (4 pairs)	3	3	3	8	3
Depth to fairleads, anchors	47.89 200	28.5 200	70 320	70 200	4 150	7 200
Radius to fairleads, anchors (m)	27 27	30 30	5.2 853.9	5.2 445	28.28 423.4	36.558 1013
Unstretched line length (m)	151.7	171.4	902.2	468	473.3	1017
Line diameter (m)	0.127	0.222	0.09	0.09	0.0809	0.0766
Line mass density (kg/m)	116	302.89	77.71	145	130.4	113.4
Line extensional stiffness (N)	1,500,000,000	7,720,000,000	384,200,000	384,200,000	589.000.000	753.600.000

Ultimate Load	Land-Based System	MIT/NREL TLP System	UMaine TLP System	OC3-Hywind Spar Buoy System	Umaine Hywind Spar Buoy System	ITI Energy Barge System
Blade-root bending moment	DLC 1.4	DLC 1.4	DLC 1.4	DLC 1.3	DLC 1.3	DLC 1.1
Low-speed-shaft bending moment	DLC 1.4	DLC 1.4	DLC 1.4	DLC 1.3	DLC 1.3	DLC 1.1
Yaw-bearing bending moment	DLC 1.3	DLC 1.4	DLC 1.3	DLC 1.3	DLC 1.3	DLC 1.1
Tower-base bending moment	DLC 1.3	DLC 1.1	DLC 1.1	DLC 1.3	DLC 1.1	DLC 1.1

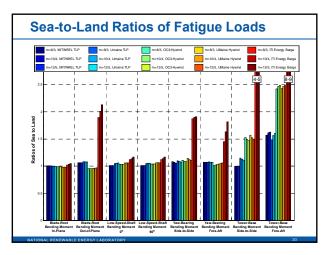
Summary of Ultimate Loads – Land vs. Offshore

- Land-based system
 - Many of the greatest loads on blades and shaft from gust of DLC1.4
 Most other large loads driven by DLC 1.3 (extreme turbulence) at rated wind speed.
- Offshore systems
 - Larger motion of offshore systems in general results in larger loads
 - Increased loads caused by inertial forces on the system.
 - These loads get greater as you move from the top of the turbine to the platform
 - Yaw errors allow for more side-to-side excitation in the system

Summary of System Ultimate Loads

• ITI Energy Barge

- Affected more by the waves than the wind
- Since waves are same for DLCs, DLC 1.1 dominates large loads due to higher safety factor


• TLPs

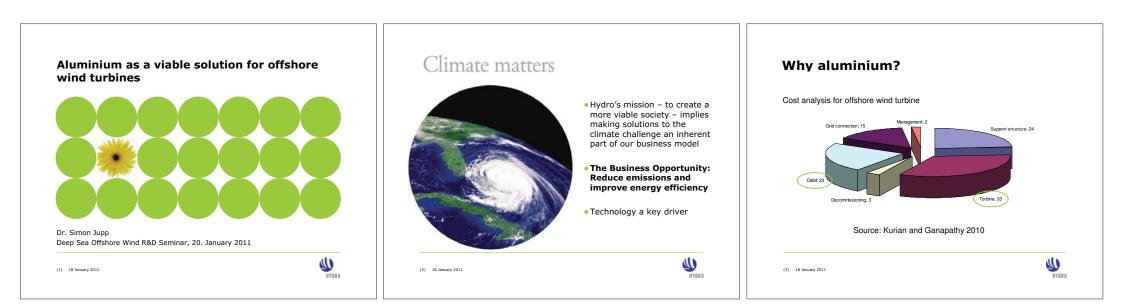
- TLPs have much less motion than the barge, and therefore lower loads (especially pitch, roll), but more than land-based
 Greatest loads are in the same DLC as land-based, DLC 1.4
- Umaine TLP much smaller and lighter than NREL/MIT TLP, but motions remain similar - TLP motion different than other concepts
- Slight decrease in Umaine TLP loads due to surge motion at time of gust

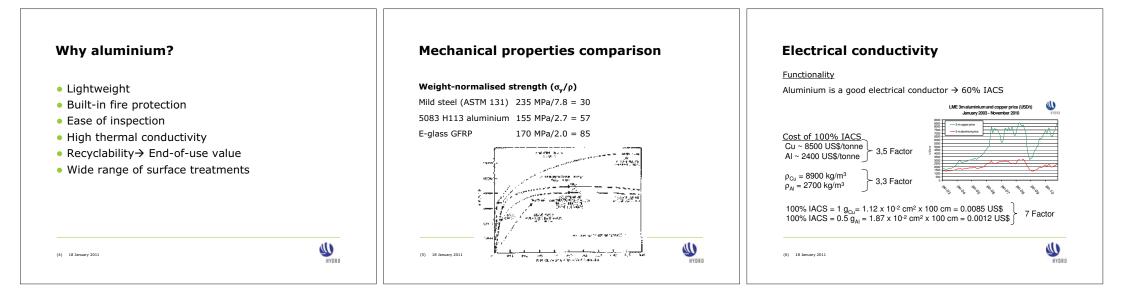
Summary of System Ultimate Loads, cont.

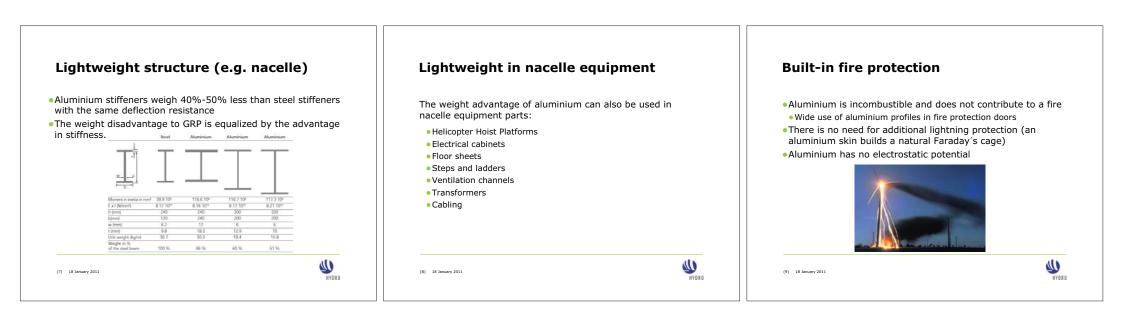
Hywind Spar Buoy

- Spar system has greater motion than TLP in pitch and roll, but less in yaw (damping from tests)
- Load increases are somewhat compensated for by a control system that limits blade and tower loads
- Result is that some loads increase in spar system and some decrease compared to TLP
- DLC 1.3 was the force driver rather than 1.4 due to controller limiting load on blades
- UMaine Hywind very similar to OC3 Hywind

Summary of Fatigue Loads


- In general, fatigue load ratios show similar trends to those of the ultimate load ratios, and are produced by the same physics explained for the ultimate loads.
- ITI Energy barge the greatest —particularly for the blade and tower.
- The out-of-plane blade-root bending in spar less than landbased, due to controller
- UMaine TLP shows increased fatigue compared to NREL/MIT TLP, though ultimate loads decreased - looser mooring allowed for more motion
- Umaine TLP pitch motion decreases shown in decrease in fore/aft tower loading and out-of-plane blade loading
- TLP and spar systems similar, except for the tower base, which are greater in the Hywind systems.




Thank You for Your Attention

Amy Robertson Senior Engineer +1 (303) 384-7157 Amy.Robertson@nrel.gov



High thermal conductivity

- Aluminium's thermal conductivity is 3-4 times that of steel and more than 100 times that of plastics
- Enables better heat dissipation through the outer skin of a nacelle and therefore allows smaller cooler sizes
- Aluminium is also extensively used in heat exchangers, both as tubes and for fins

HYDSO

(10) 18 January 2011

Recyclability

- Aluminium can be infinitely recycled without a loss in quality with a saving of 95% of energy compared to its primary production
- Aluminium keeps a commercial value along its whole lifetime; e.g. the "scrap value" is typically in the range of 1.000-1.500 EUR/tonne (Note: as of 5 Jan 2011, LME Al scrap price >1800€/tonne).

Longevity

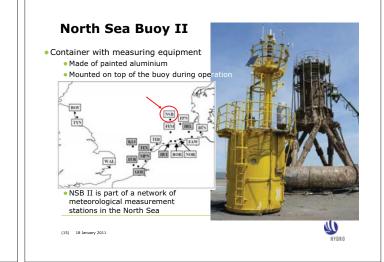
- •75% of all aluminium produced so far is still in use
- Aluminium can be kept unpainted in normal environmental conditions
- Oldest aluminium roof in the world: San Gioacchino church of 1896
- Aluminium survives harshest marine conditions:
- Wide use in helicopter decks and living guarters of offshore platforms

Ease of inspection

As aluminium does not need to be painted and is rust- free, it can easily be inspected with visual means. Any other inspection methods for other metals can also be applied on aluminium.

This is expected to reduce the need for costly and intensive maintenance - especially when used in offshore wind turbines.

HYDRO


Wide range of surface treatments

- Due to its natural oxide layer, an aluminium surface does not corrode and does not need to be painted for surface protection
- For aesthetical reasons and to gain a certain appearance, an aluminium surface can be:
- Sand- or shot-blasted
- Painted
- Brushed or polished

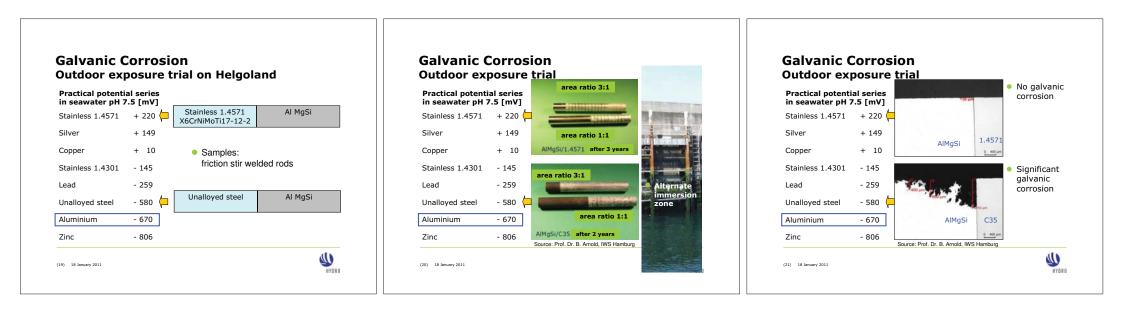
Anodized

HYDRI

North Sea Buoy II

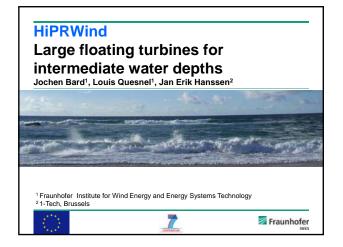
• NSB II has been operated in the open sea for 32 years with no maintenance other than occasional cleaning

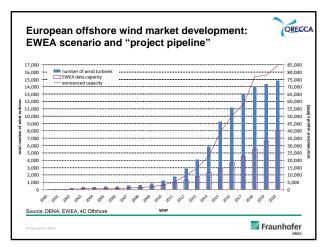
North Sea Buoy II Technical survey in 2005

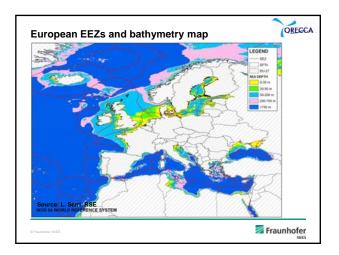

• No substantial wall thickness reduction on any part of the buoy

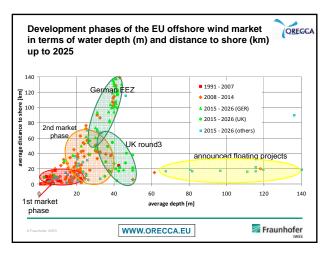
- No cracks in base material or weld seams
- Weldability identical to new material

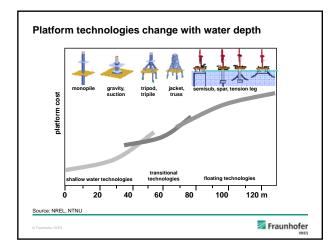
• Joints with stainless steel screws (1.4571) fully intact without galvanic isolation

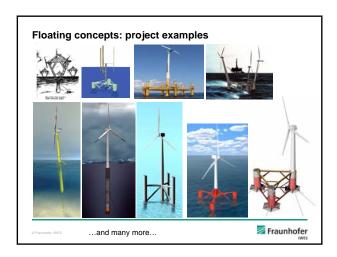


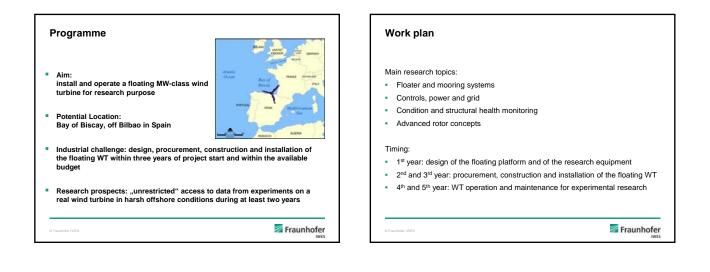


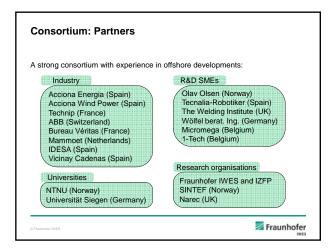


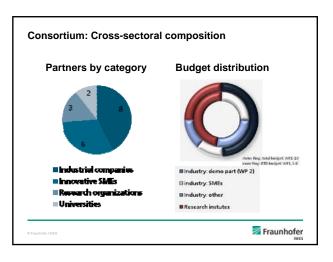


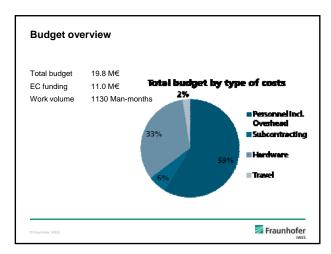


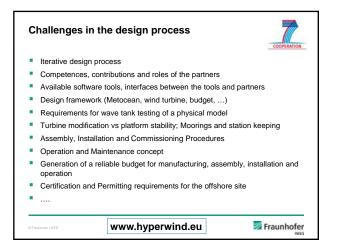


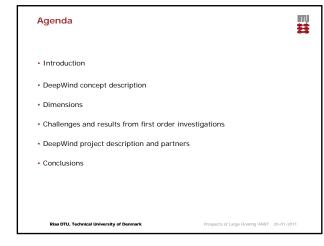


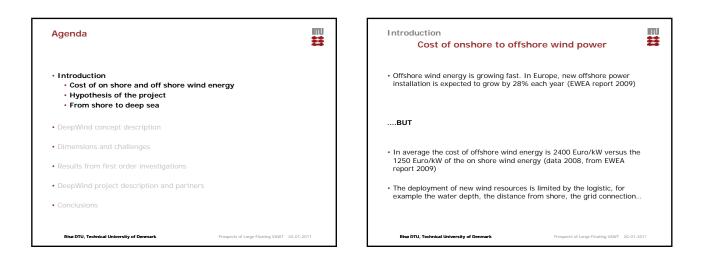


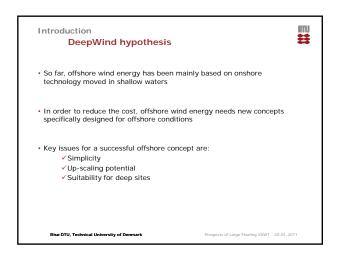


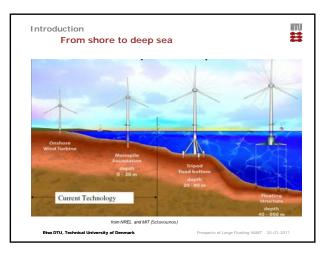

Call FP7-ENERGY-2010-1 HiPRwind: key facts and figures "High Power, high Reliability offshore wind technology" Topic ENERGY.2010.2.3-1: Cross-sectoral approach to the development of Project coordinator: Fraunhofer IWES very large offshore wind turbines Collaborative project, where "the active participation of stakeholders involved · Funded under the European Commission's 7th Framework Programme in harsh environment industrial developments is essential to achieving the full impact of the project." Main source for European R&D funding, 50+ billions € over 7 years Scope Theme ENERGY.2010.2.3-1: Cross-sectoral approach to the development of very large offshore wind turbines Testing at industrial prototype scale to develop 10 MW range OWT Involvement of offshore industry stakeholders required Treat bottleneck issues such as maintenance, power stability, weight/size limitations Advanced power electronics and ICT sub-systems Project start date: November 1, 2010. End date: October 31, 2015 • 1st deadline on 15th October 2009 . Total budget ~ 20 million €, total EC-funding 11 million € 35 M€ available for 6 distinct topics in 3 different research areas • 1130 man months over 5 years Fraunhofer Fraunhofer

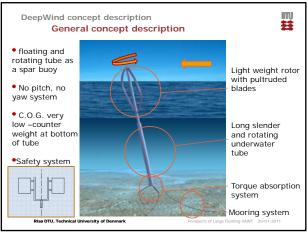


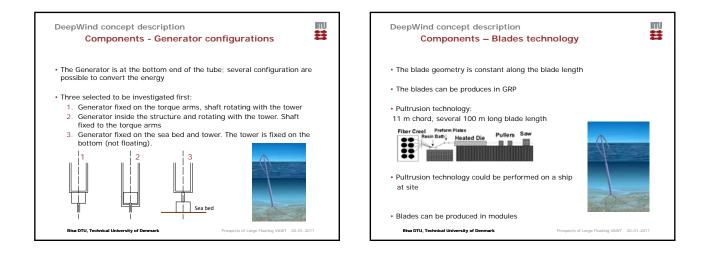


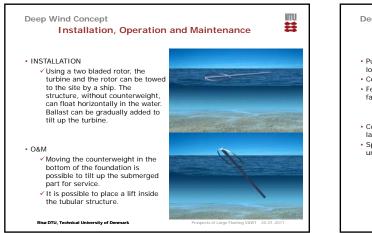


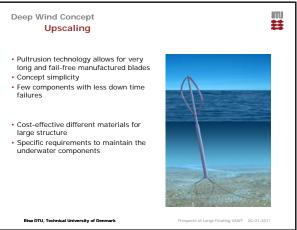


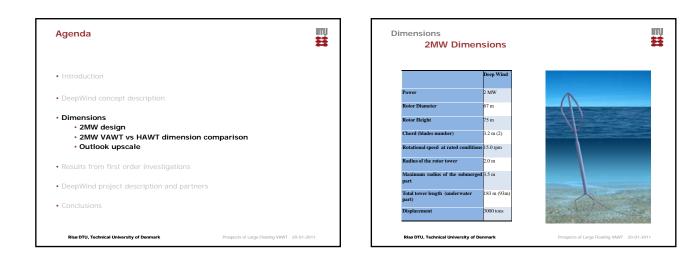


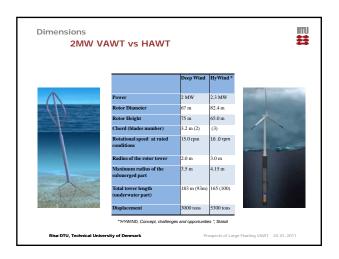


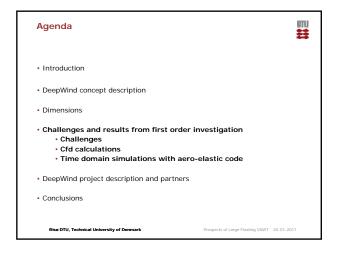


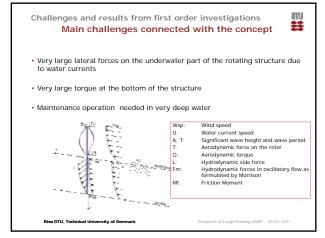


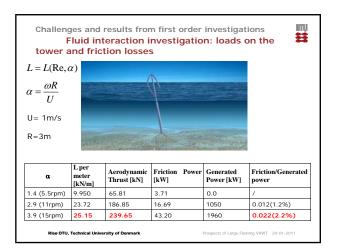


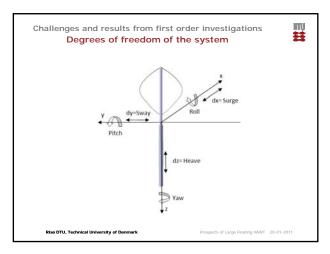


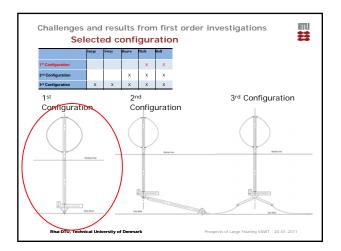


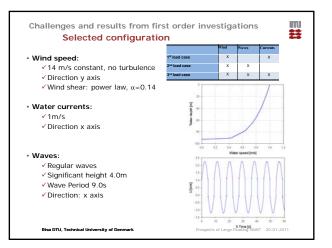


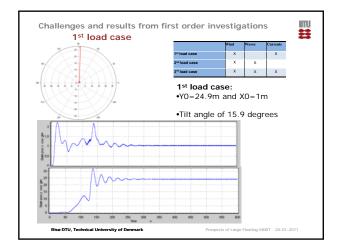


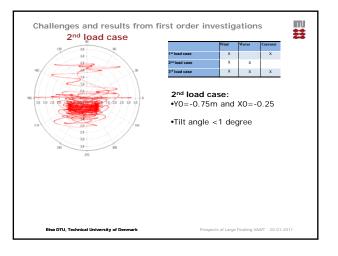


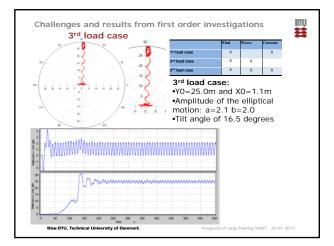


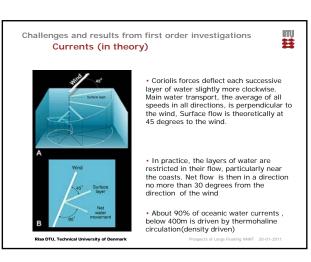

Dimensions 20 MW	outlook				쁖
		2 MW	20MW		
	Power	2 MW	20 MW		
	Rotor Diameter	2 MW	20 M w		
VI)	Rotor Height	75 m	240 m		
N/	Chord (blades number)	3.2 m (2)	11.0 m(2)		
	Rotational speed at rated conditions		4.1 rpm		
	Radius of the rotor tower	2.0 m	3.0 m		
	Maximum radius of the submerged part	3.5 m	6.5m		
and a	Total tower length (underwater part)	183 m (93m)	340 (105)		
The second se	Displacement	3000 tons	13000 tons		
Risø DTU, Technical Univ	ersity of Denmark	Pro	ospects of Lar	ge Floating VAWI	20-01-2011

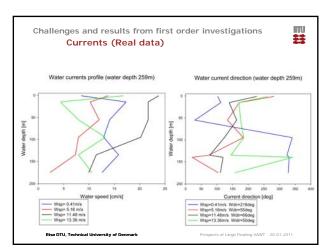


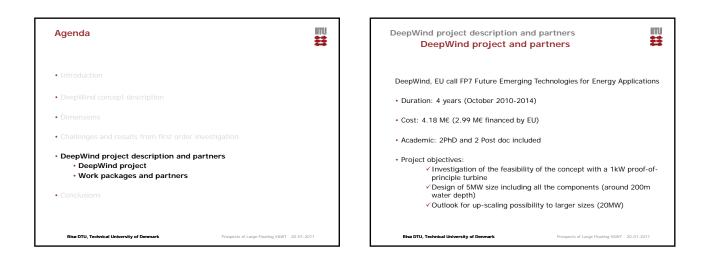


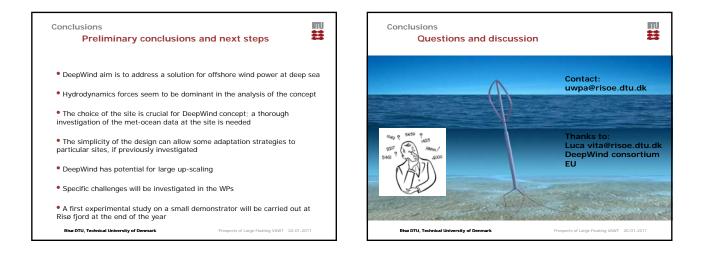






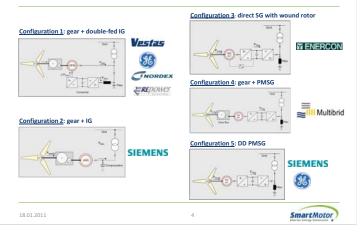






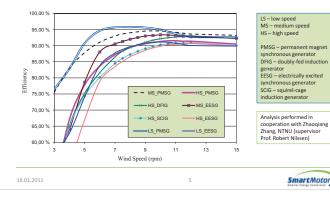
A2) New turbine technology

Novel PM generators for large wind turbines, Alexey Matveev, SmartMotor


Novel methodology for fatigue design of wind turbine components of ductile cast iron, Prof Gunnar Härkegård, NTNU

New power electronic schemes for large wind turbines, Prof Marta Molinas, NTNU

Standard for floating wind turbine structures, Johan Sandberg, DNV



Basic drive train solutions

Efficiency of different drive trains

Components included: gearbox, generator, converter, transformer
 Direct driven PM generator solution gives the best efficiency at speeds below rated

Direct drive vs geared solution

- Direct drive is larger and heavier, <u>but</u>
- it doesn't suffer gearbox-related problems

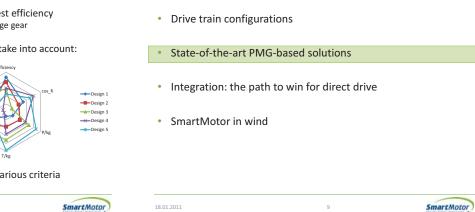
High-torque generator for direct drive

• High-torque generator for direct drive is large. This is basically the only drawback of direct drive solution

PM generator from Siemens. 3 MW, 17 rpm

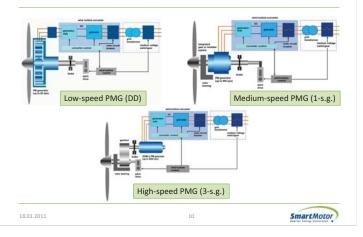
Some conclusions

- Drive trains with PM generators have the best efficiency


 Especially without gear (direct drive) and 1-stage gear
- However, there are other characteristics to take into account:
 - WeightCost

18.01.2011

SmartMotor


- Power factor
- Lifetime
- Reliability
 Manufacturability
- Design means finding a trade-off between various criteria

8

...next part

Available solutions with PMG

Products of ABB and TheSwitch

• Low-speed, medium-speed and high-speed generators

Commercial power electronics

Examples of medium-voltage (ABB) and low-voltage (TheSwitch) converters

TheSwitch

Smart Motor

18.01.2011

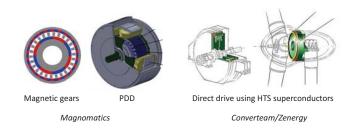
12

18.01.2011

Is it end of the story?

 Big companies have products and even complete packages up to approximately 5-7 MW. Is it end of the development?

NO!!!

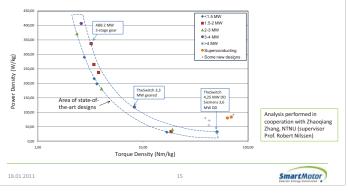

- New concepts under investigation, for example:
 - Magnetic gears and Pseudo-direct drive
 - Superconducting machines
- There are problems when going to powers higher then 5-7 MW. These are to be solved!

18.01.2011	13	SmartMotor

Examples of new concepts

18.01.2011

- Magnetic gears, pseudo-direct drive (PDD), superconducting machines
- The concepts have not been proven yet for high-power WEC


14

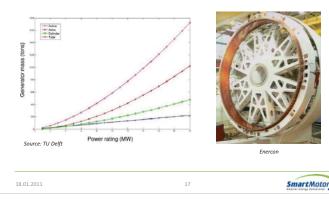
SmartMotor

18.01.2011

Technology frontier for PM generators

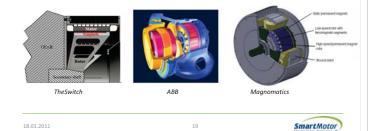

 State-of-the-art in generator weight (expressed via power and torque densities, each point corresponds to one generator design)

Active parts, cooling and carrying structure


- Active parts make 30-40% of total weight
- Cooling system defines size of active parts, it
 may take considerable space
- Carrying structure is usually massive

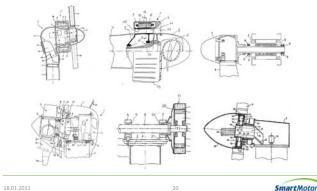
When going for higher powers...

• Weight of carrying structure grows disproportionally!


...next part Drive train configurations State of the art PMG-based solutions Integration: the path to win for direct drive SmartMotor in wind

18

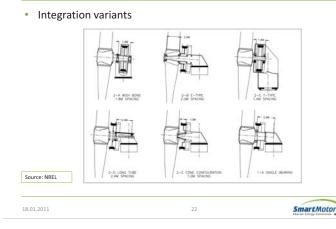
SmartMotor


Integration strategies

- For drive trains with gearboxes: integrate generator with gearbox (see examples below)
- For direct drive: integrate generator with the turbine! (examples will follow)

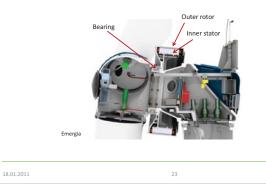
Direct-driven generator in the nacelle

• Just a few of numerous patented designs

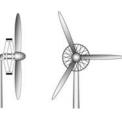


Direct-driven generator in the nacelle

• Popular concept: generator between blades and tower



Direct-driven generator in the nacelle


Direct-driven generator outside the nacelle

- No shaft
- Single bearing common for generator and blades

Direct-driven generator outside the nacelle

• Different approaches to weight reduction

Concept: light carrying structure

of the generator

Concept: integration of generator with blades

SmartMotor

18.01.2011

SmartMotor

24

Key to success for generator supplier

- Work in close contact with the turbine designers
- Provide best active parts
 - Lightest
 - Most compact
 - Giving high efficient energy conversion
 - Segmented

18.01.2011

- Easy to integrate
- Cheap in production
- With low cogging
- Medium- and low-voltage

...next part

18.01.2011

• Drive train configurations

SmartMotor in wind

- State of the art PMG-based solutions
- Integration: the path to win for direct drive

What is SmartMotor

- Established in 1996 in Trondheim, Norway
- One of the largest R&D groups in the world with focus on PM technology

Reference projects offshore

• Low-voltage and medium-voltage machines of MW-class

25

SmartMotor

for Rolls-Royce Marine (in operation)

1.1 MW tidal turbine of Atlantis Resource Corporation (delivered)

18.01.2011

10 MW offshore wind turbine of SWAY (under construction)

28 SmartMotor

The technologies we believe in

- PM machines with concentrated winding and ironless machines
- · Ideal for high-torque applications like wind turbines with direct drive

26

SmartMotor

Our technologies

- Concentrated winding technology is advantageous compared to distributed winding in high-torque applications due to
 - higher slot fill factor and consequently better cooling of the copper
 Pre-shaping of the coil
 - No insulation is needed between different phases

SmartMotor apply patented slot/pole combinations

- segmentation with distributed winding leads to half-empty slots (10% loss in total slot filling), while with concentrated winding all slots are filled
- low cogging
 Competitors achieve this by shaping magnets

Ironless technology is advantageous for machines with large

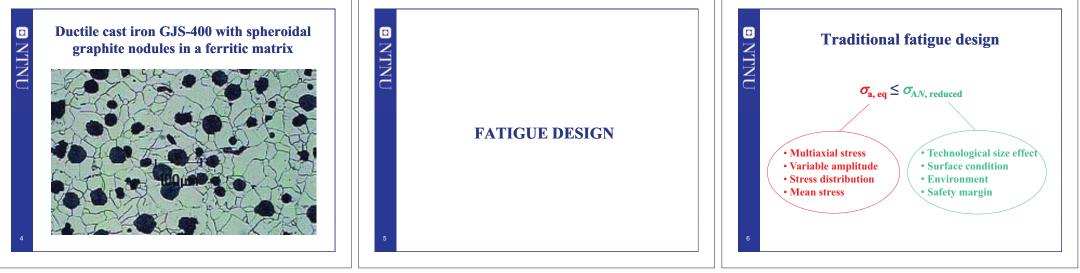
diameter

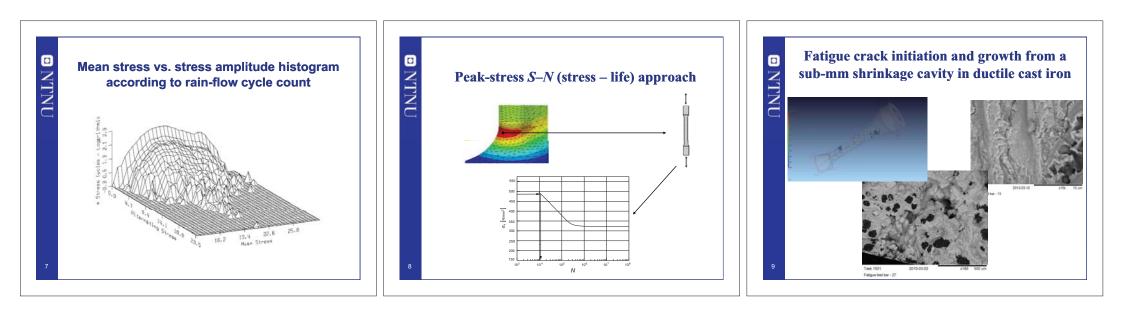
- There is no attracting force between rotors and stator
- The structure is not sensitive to relative displacement of rotors and stator

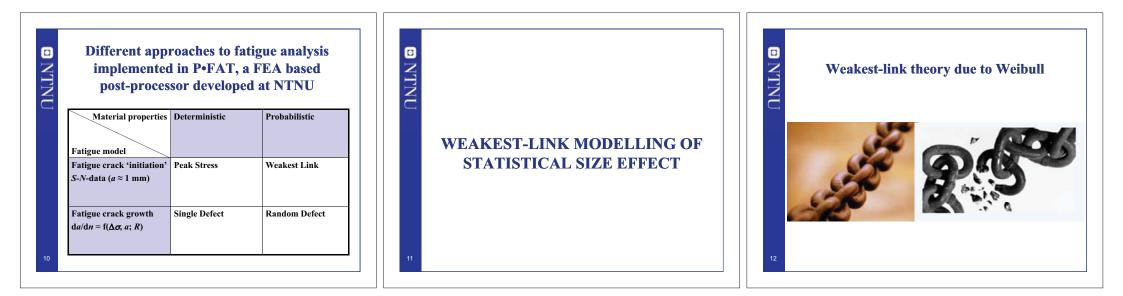
30

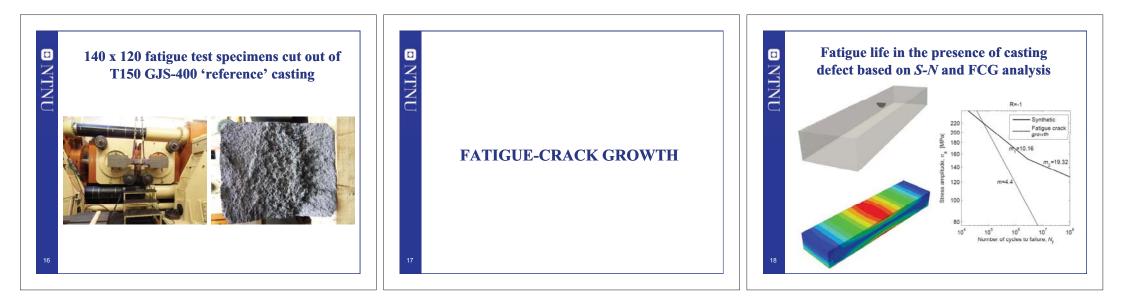
29

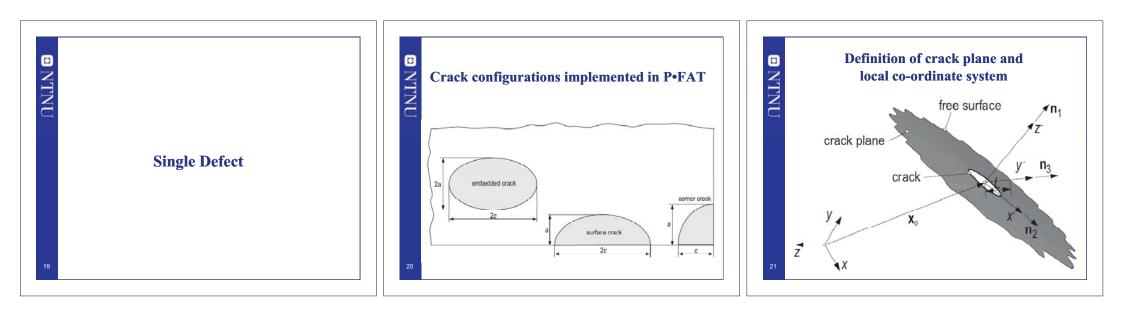
18.01.2011

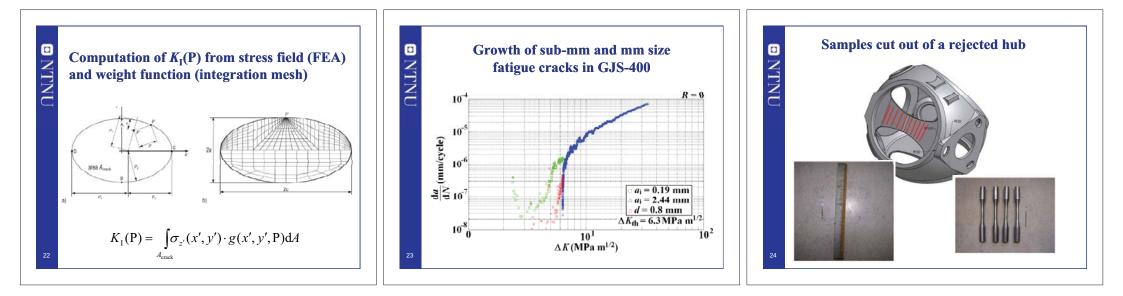

SmartMotor

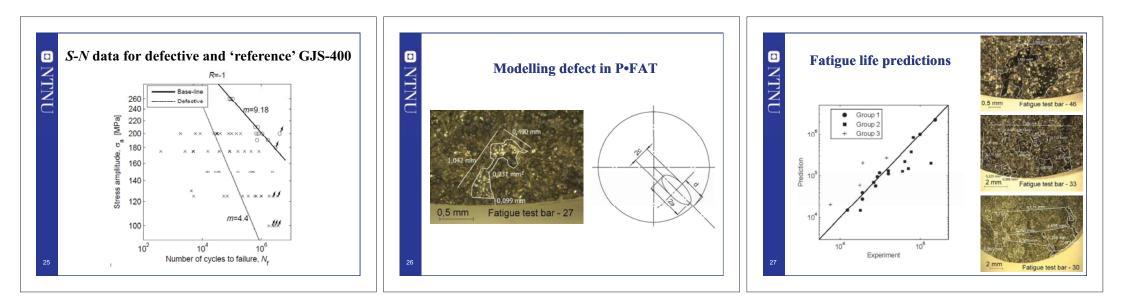


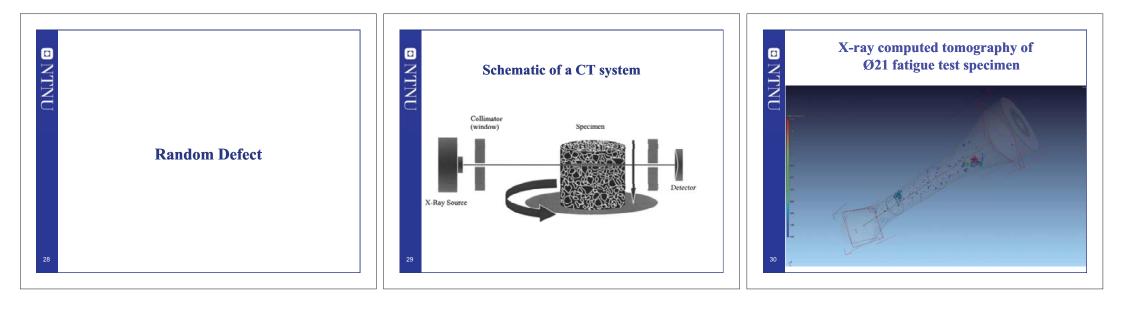

60

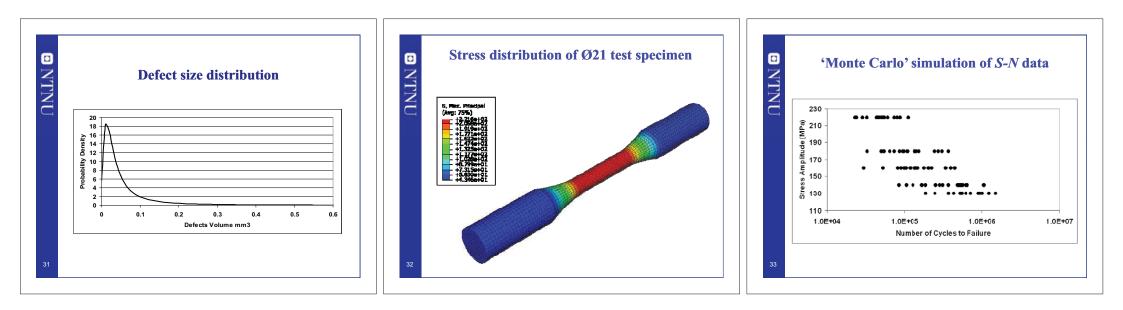


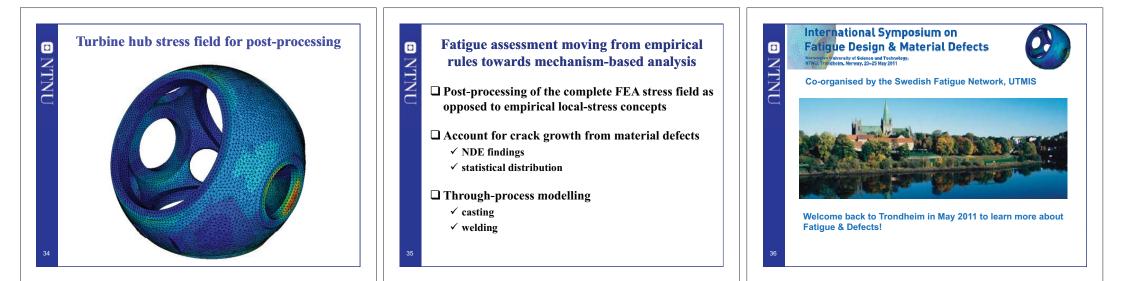


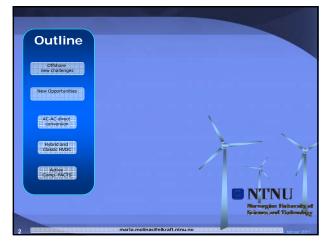


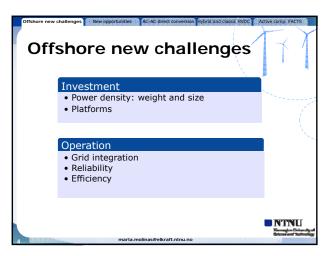


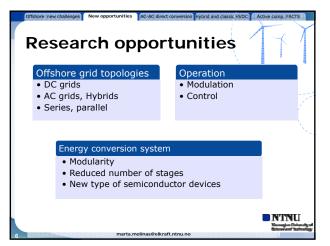


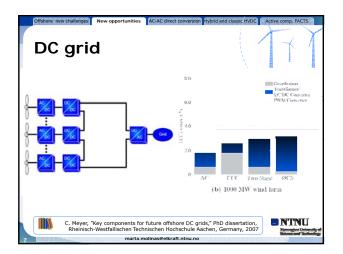


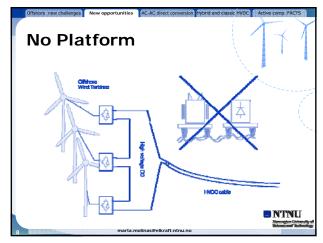


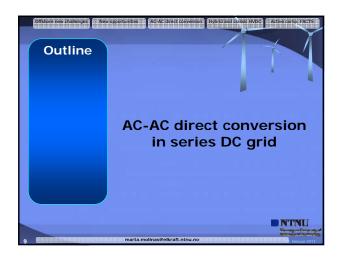


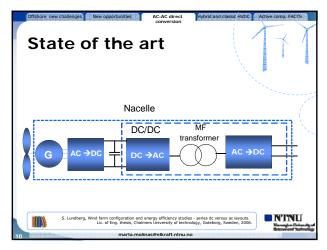


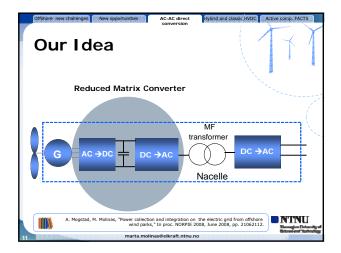


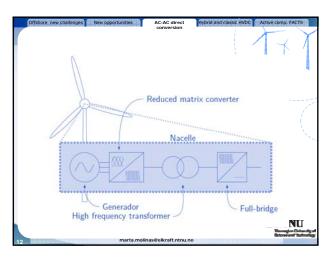


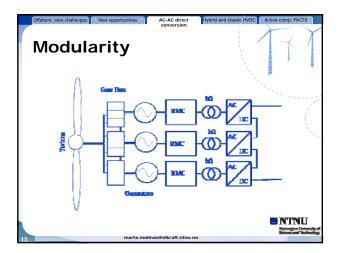


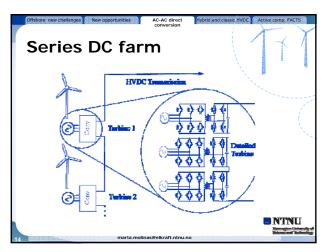


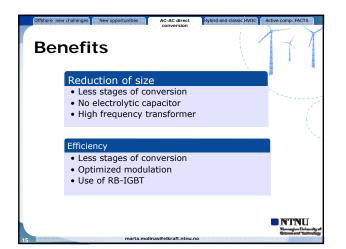


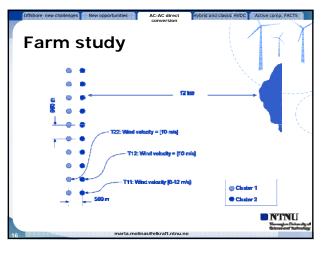


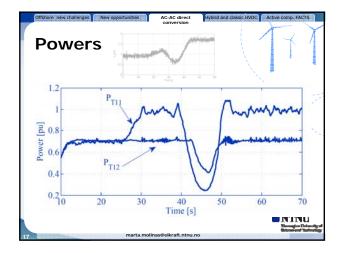


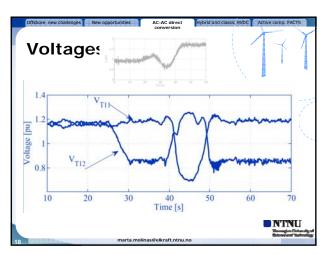




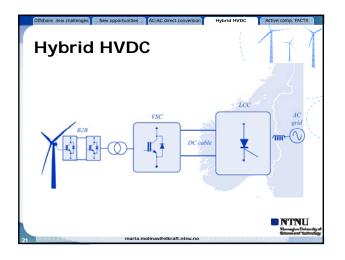


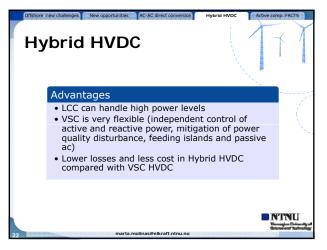


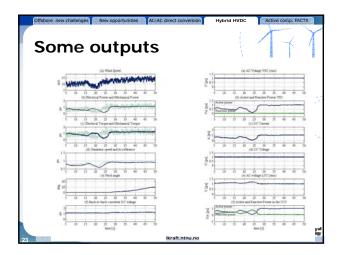


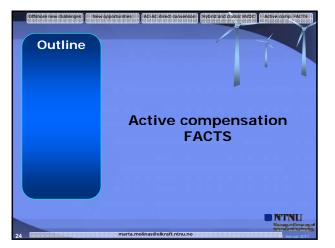


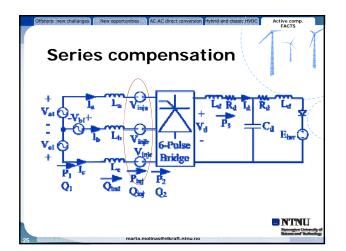


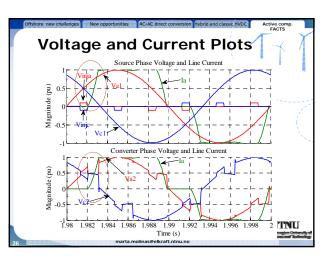


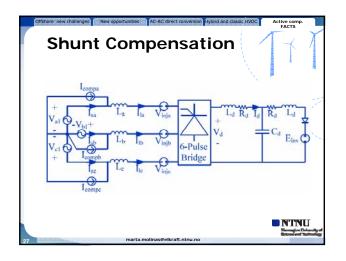


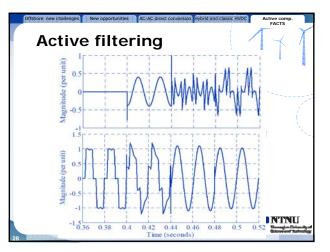


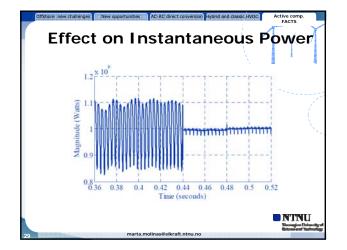


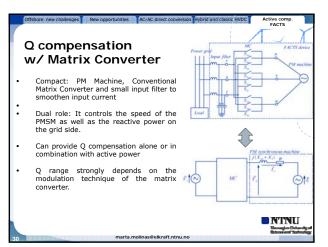










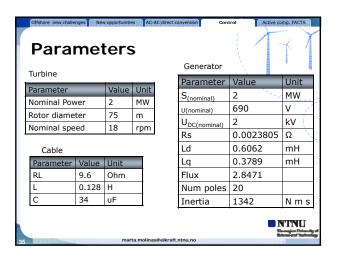


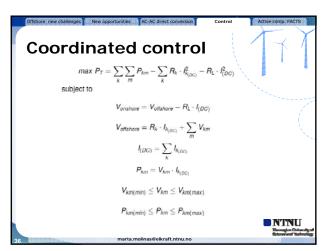
P and Q strongly correlated

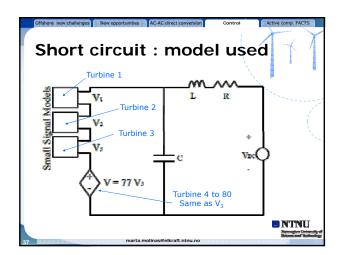
If P=0, Q=0 Pure Q compensation not possible

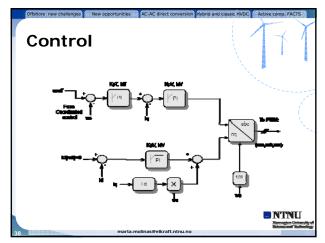
Three-Vector-Scheme

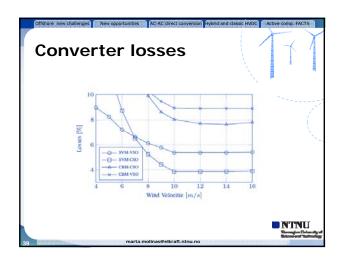
Decouples P and Q

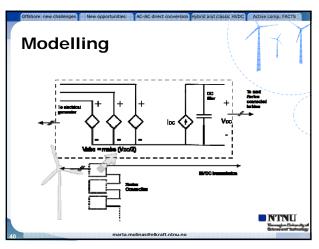


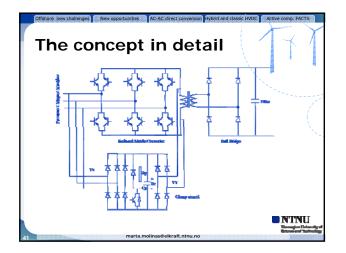

Active com FACTS

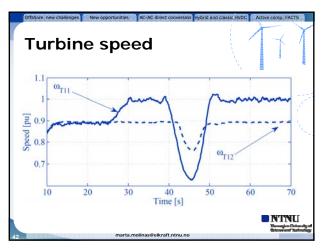

NTNU

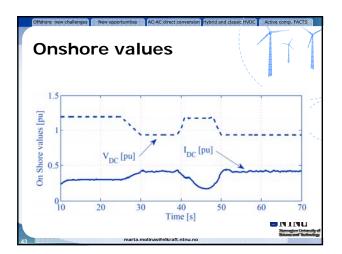

128

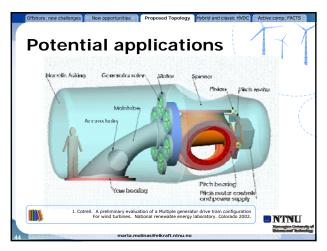


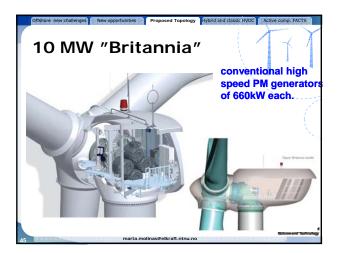


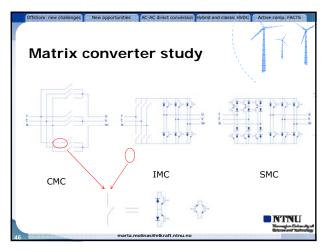


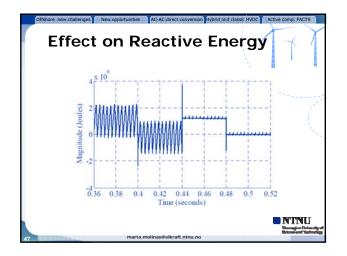


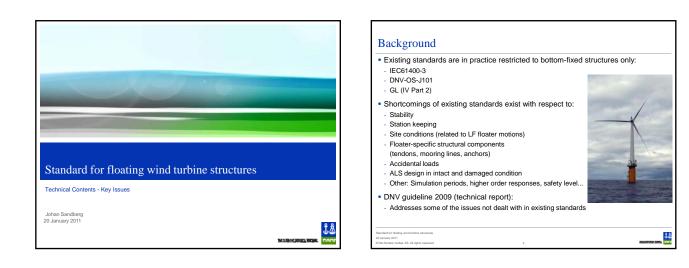


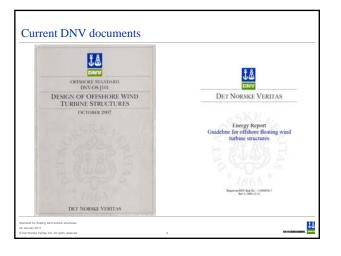


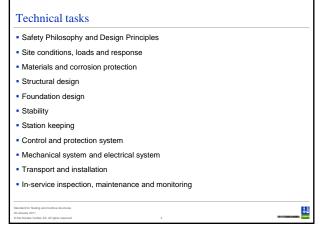


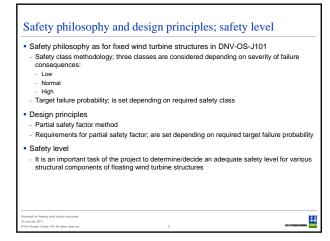


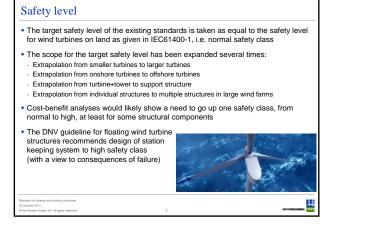












14

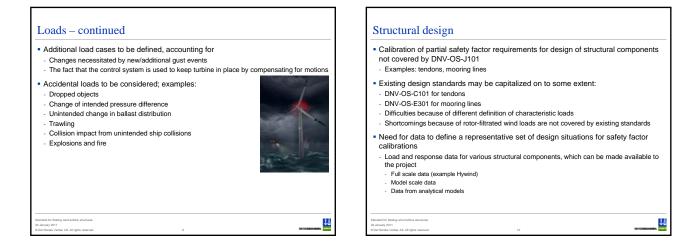
Site conditions

Special issues to be considered relative to current requirements in existing codes:

- Adequate representation of wind in low frequency range
- Adequate representation of dynamics may require more thorough/improved representation of simultaneous wind, waves and current
- Gust events based on gust periods in excess of 12 sec must be defined; must cover expected events and reflect frequencies encountered for dynamics of floaters
- For floaters which can be excited by swell, the JONSWAP wave spectrum is insufficient and an alternative power spectral density model must be applied

For tension leg platforms, water level

and seismicity may be of significant


- 2011 Ivi Veritas AS. All rights rese

importance

Loads Special issues to be considered relative to current practice for bottom-fixed structures: Simulation periods to be increased from standard 10 min to 3 to 6 hrs Purpose: Capture effects of nonlinearities, second-order effects, slowly varying responses Challenge: Wind is not stationary over 3- to 6-hr time scales · Load categorization to be supplemented by loads associated with station keeping system Pretension of tendons (permanent load) Pretension of mooring lines (permanent load) Ship impact loads (from maximum expected service vessel) need more thorough docu-mentation than for bottom-fixed structures Larger consequences of ship collision Motion of two bodies with different motion characteristics

i Intas AS, All richts rese

Stability Sufficient floating stability is an absolute requirement In operation phase and in temporary phases - In intact as well as in damaged condition · Additional compartmentalization is usually not required for unmanned structures The need for a collision ring in the splash zone depends on Manned/unmanned Substructure material (concrete/steel/composites) Size of service vessel and resistance against ship impacts Location and design of manholes and hatches to be carried out with a view to avoid water ingress · For some concepts, dropped objects may pose a threat in case of repairs and lifting operations

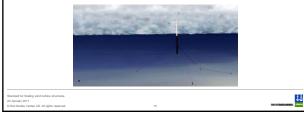
Station keeping

Three types are foreseen:

- Catenary or taut systems of chain, wire or fibre ropes Tendon systems of metal or composites for restrained systems such as TLPs
- Dynamic positioning

Various issues for catenary and taut moorings:

- Mooring system is vital for keeping wind turbine in position such that it can produce electricity and maintain transfer of electricity to receiver
- Optimization of mooring systems may lead to non-redundant systems where a mooring failure may lead to loss of position and conflict with adjacent wind turbines Sufficient vaw stiffness of the floater must be ensured
- Various issues for tendon systems:
- Systems with only one tendon will be compliant in roll and pitch
- Floaters with restrained modes will typically experience responses in three ranges of frequencies
- . High frequency, wave frequency, low frequency
- More complex to analyse than other structures


Terminations are critical components, regardless of whether tendon is metallic or compos

Key floater issues Needs for information In design: Load/response data for various structural components Tendons Mathieu Instability and Vortex Induced Motions must be avoided or be controllable Mooring lines Cautious selection of eigenperiods in heave, pitch and roll - Structural components in floater from analysis models and/or full scale measurements State-of-the-art offshore design practice provides guidance In particular for compliant floaters: · Wind data for definition of new gust events • Wind data in low frequency range (?) Location of fairleads Use of "crowfoots" to ensure sufficient restoring stiffness in yaw Ship impact load data In particular for restrained floaters: Data for accidental loads and frequencies of accidental events causing damage of wind turbine structure Terminations are usually critical Caution to be exercised with respect to risk of higher order responses (ringing, springing); springing is very dependent on damping List to be expanded... · Eigenperiods to be above the fundamental wave periods to avoid resonance 14 14 2011 ke Veritas AS. All rights reserved. tas AS. All rights res

Key floater issues - continued

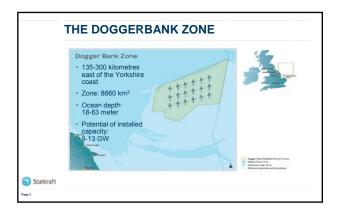
In operational mode:

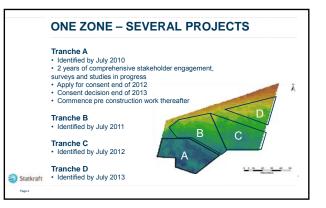
- Effects of rotating turbine on global motions must be accounted for
- Control software and algorithms to be used to
- limit inclinations and thereby limit motions, accelerations, bending moments (roll and pitch wind damping effects may be vital)
 positively influence mooring and cable hang-off motions with respect to fatigue
- positively influence stability of floater

B1) Power system integration

Offshore Wind farm Grid Integration challenges, Sharifabadi Kamran, Statkraft

Offshore grid developments, Kjartan Hauglum, Statnett

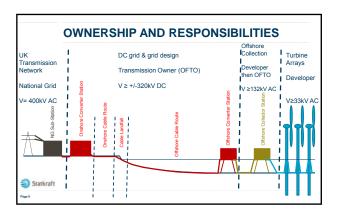

Characterization and modelling of the power output variability of wind farms clusters, Prof Hans Georg Beyer, Uni of Agder

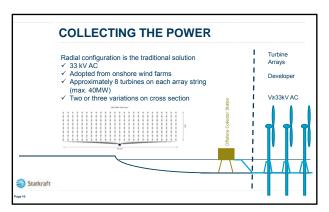

Supply of offshore wind energy to oil and gas installations, Harald Svendsen, SINTEFEnergi AS

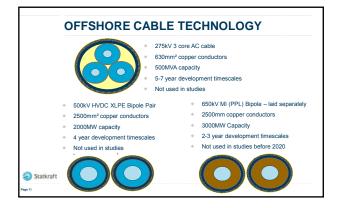

Balance management with large scale offshore wind Integration, Post Doc Steve Völler, NTNU

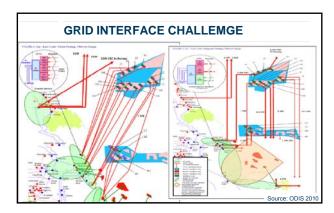
ELECTRICAL SYSTEM DESIGN

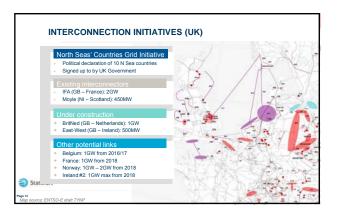
- -> Design & Technical considerations
 - Functionality and reliability
 - How many turbines per string? Distance between turbines?

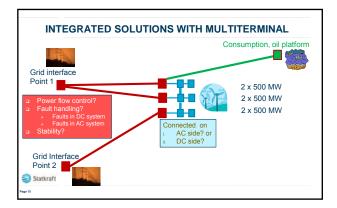

Statkraft

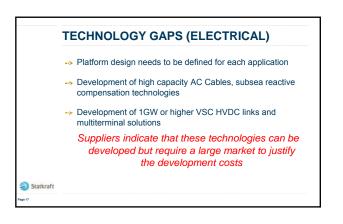

- Wake effects vs. available area, CAPEX (cables) and OPEX (O&M, reliability)
- Voltage level, DC or AC
- Optimising the cable system (cross-section against losses)
- Proof of concept


OPTIMISING THE INTER-ARRAY LAYOUT -> Alternative configurations and technologies


- Meshed or radial network?
- How many substations? Subsea reactive compensations?
- How many collector platforms?
- Distance between turbines?
- Wake effects vs. available area, CAPEX (cables) and OPEX (O&M, reliability)
- Wind farm grid voltage?
 AC or DC collector grid? Advances in converter technology to higher voltages opens more options

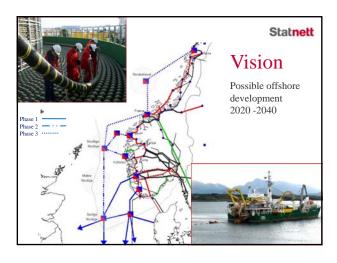

Statkraft

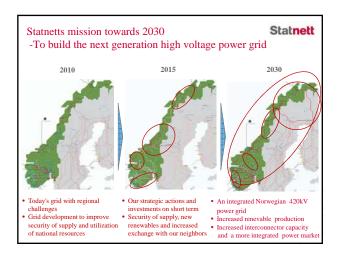


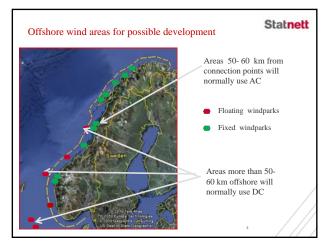


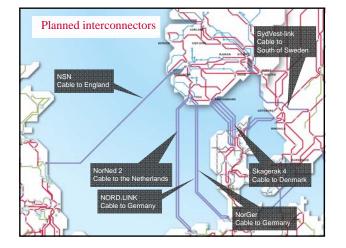
In general:

- Scaling up VSC HVDC technology for GW transmission
- Reliability for offshore application must be demonstrated
- $\hfill\square$ XLPE submarine cable systems must be proven for operation at 300kV DC or higher, Cable joint technologies for deep see
- Multi-terminal HVDC technology & control strategies, power flow
- Development of DC Circuit Breakers
- Automatic network restoration
- DC Protection relay technologies for DC grid

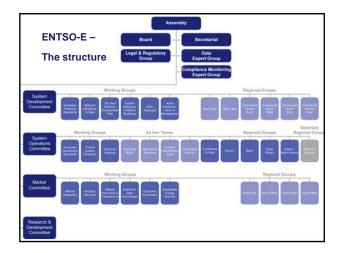

lange Statkraft

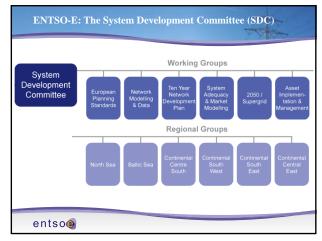


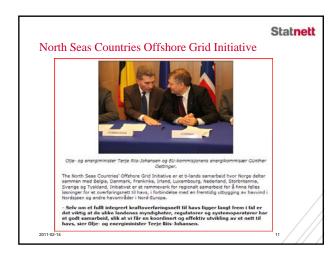

<section-header><section-header> Way for way for the new technologies & solutions with focus on costs? How can we future proof the new technologies & solutions with focus on stoppers? Technology development with vendors R&D programs, national and EU R&D programs, national and EU R&D programs. It is required to develop new technologies and approaches, with focus on reliability, flexibility and lower costs

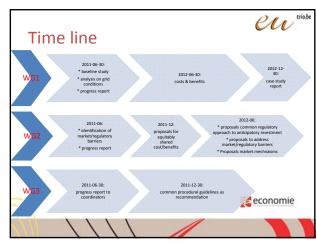

PURE ENERGY











Offshore grid is technically feasible, but...

Statnett

- Multi terminal VSC HVDC has not yet been delivered
- Only one contractor with a fixed (jacket) offshore project in operation
- DC breakers need development
- High losses in VSC AC/DC converters
- Deliveries from different suppliers have to interact in the same grid
- Technical operation of onshore grid very demanding with more interconnectors

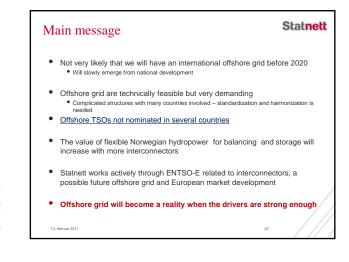
Offshore grid – regulatory challenges

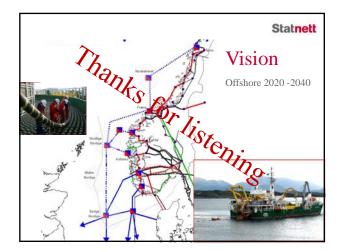
- Different framework in different countries
- Developer prioritize areas with the most profitable solutions
- Some regulators do not allow direct energy flow from national renewable power plants directly to another nation
- Protectionist development every nation and supplier eager for own industry development
- Different set of rules for grid connection
- Grid development onshore caused by offshore wind who pays?

Offshore power grid - some reflections

Statnett

Statnett


- Focus for the time being is national targets
- Modular development from national development in the southern part of the North Sea
- Different technical standards and markets at both ends of the interconnectors
- Electrification of oil and gas installations may contribute to development of an offshore power grid on Norwegian shelf
- Offshore wind may be a driver if the society is willing to pay the price, <u>subsidies included</u>


2011-02-14

Statnett EUROPEAN ENERGY REVIEW The Dutch lose faith in windmills

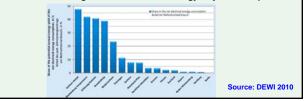
- The new Dutch right-wing government has announced a radical overhaul of Dutch energy policy. It is cutting subsidies for most forms of renewable energy drastically, and is even putting an end to all subsidies for offshore wind, solar power and largescale biomass. It has also announced a warm welcome for new nuclear power stations – the first time a Dutch government has done so since the Chernobyl-disaster in 1986. However, not all is lost for the renewable energy sector: the cabinet is still brooding on a long-term strategy and a "Green Deal" that might yet put the Netherlands back on a "greener" course. 2011-02-14 19

Characterization and modelling of the power output variability of wind farms clusters

Hans Georg Beyer Department of Engineering University of Agder, Grimstad

🞢 UNIVERSITETET I AGDER

Characterization and modelling of the power output variability of wind farms clusters


- increasing contribution of non-dispatchable (renewable) power calls for new strategies of system operation, unit dispatch and storage management
- for the design of the new strategies, detailed knowledge on the characteristics of the renewable power flows is nececessarv

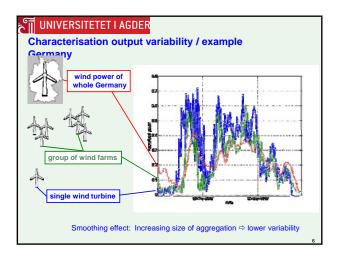
SI UNIVERSITETET I AGDER

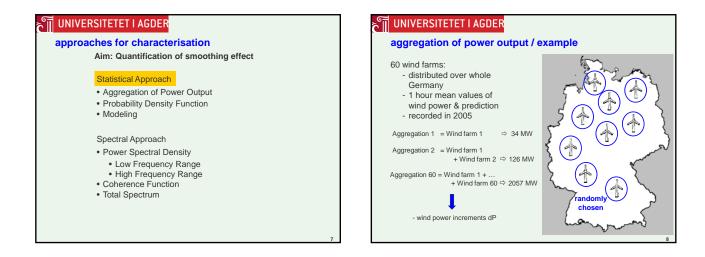
Characterization and modelling of the power output variability of wind farms clusters

- detailed knowledge on the characteristics of the renewable power flows is necessary

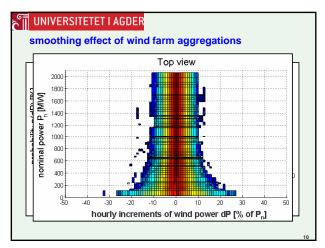
examples are e.g. developed in Germany where regional shares of wind energy may amount up to ${\sim}50\%$

ST UNIVERSITETET I AGDER


Characterization and modelling of the power output variability of wind farms clusters


- detailed knowledge on the characteristics of the renewable power flows is necessary
 - examples are e.g. developed in Germany
 - for day-to day operation: schemes for wind power forecasting are in operational use
 - for planning of capacity extension and grid reinforcement: tools for the characterization of the power output variability had bee set up

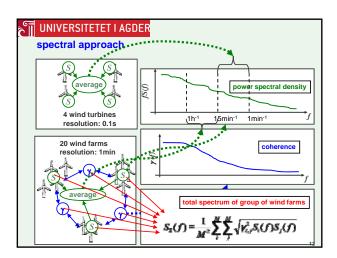
UNIVERSITETET I AGDER

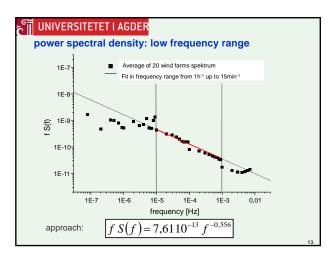

Characterization and modelling of the power output variability of wind farms clusters

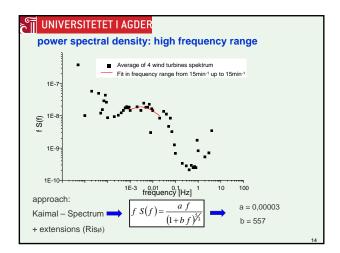
- examples are e.g. developed in Germany
 - for planning of capacity extension and grid reinforcement: tools for the characterization of the power output variability had been set up
 - e.g. Quintero et al. DEWEK 2008 Knorr et al. EWEC 2009 coop. with Fraunhofer IWES, Kassel, Germany
 - following:
 - approaches used
 - outlook: how to extend to the Norwegian offshore environment

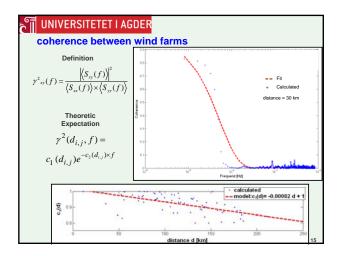
UNIVERSITETET I AGDER

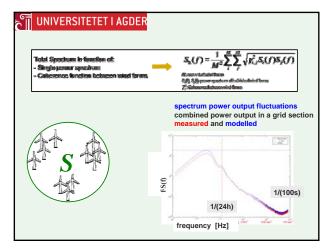
approaches for characterisation

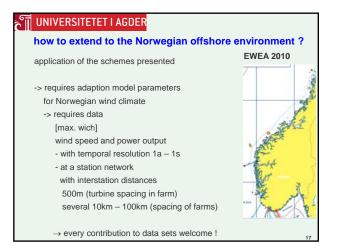

Aim: Quantification of smoothing effect


Statistical Approach

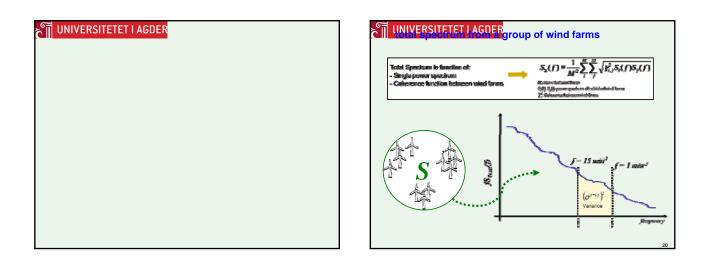

- Aggregation of Power Output
- Probability Density Function
 Modeling
- wouelin

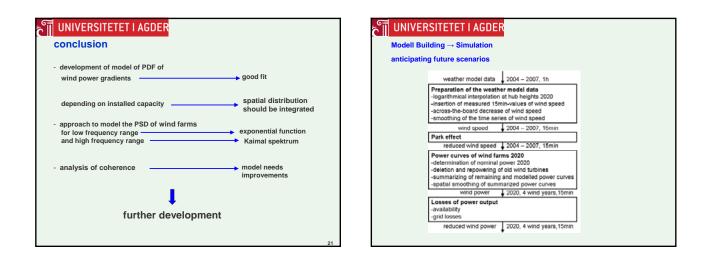

Spectral Approach

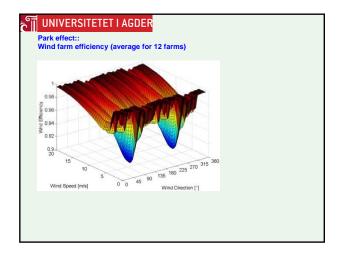

- Power Spectral Density
 - Low Frequency RangeHigh Frequency Range
- Coherence Function
- Total Spectrum

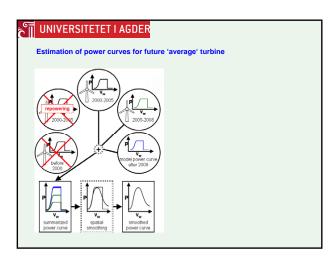


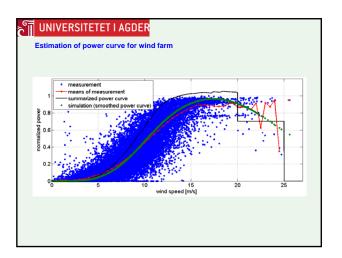


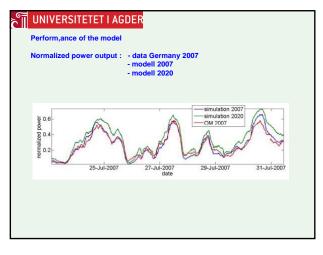


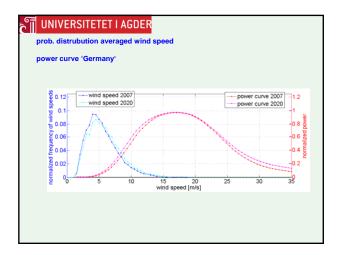


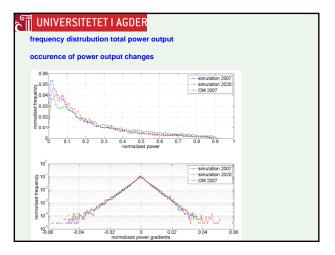


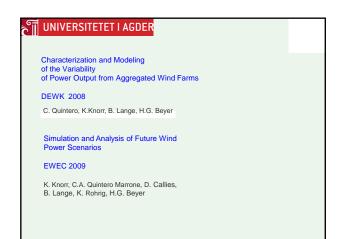


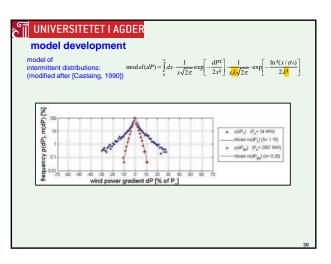


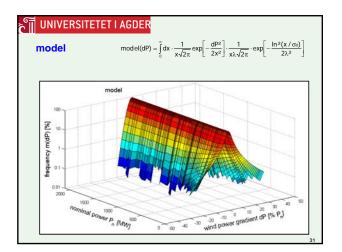


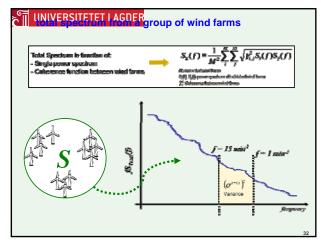


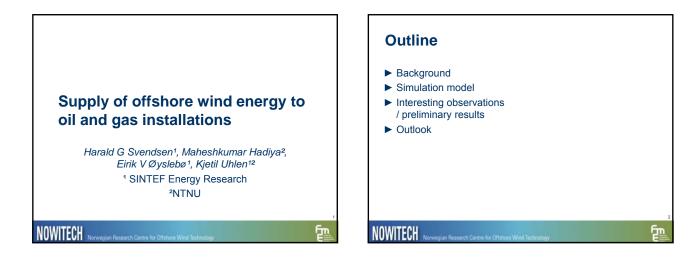


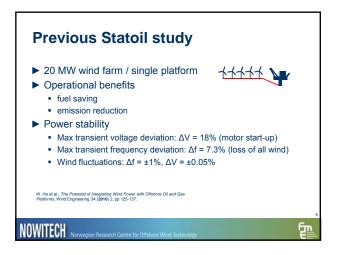


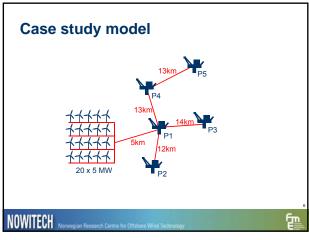


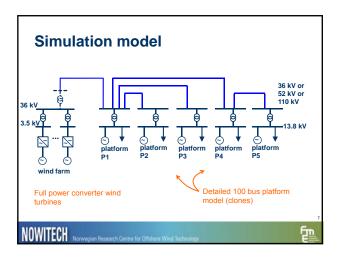


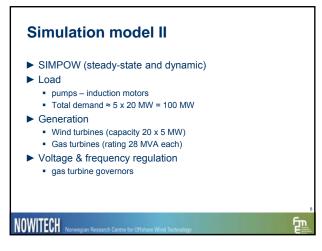


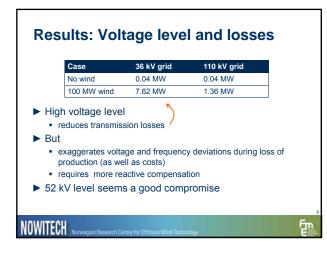


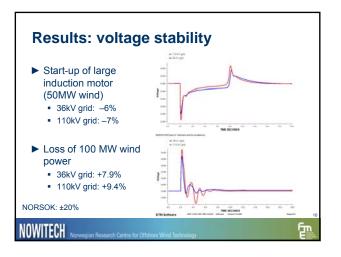


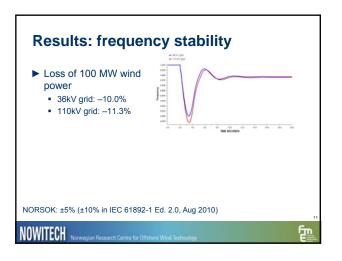


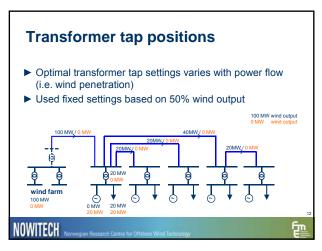


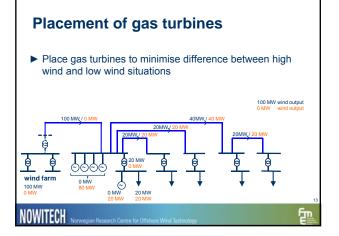


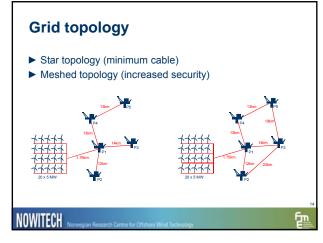


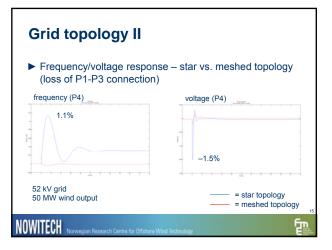


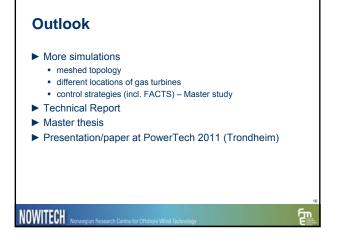




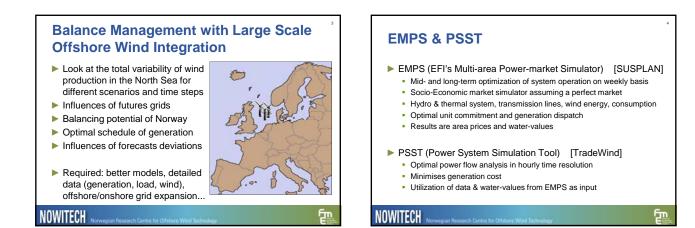


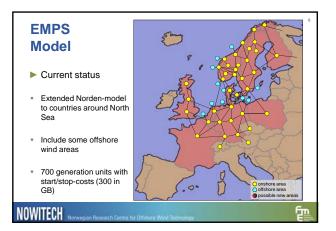


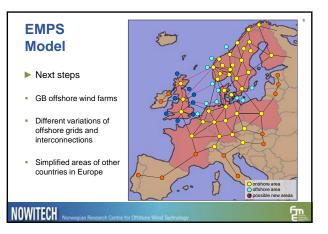


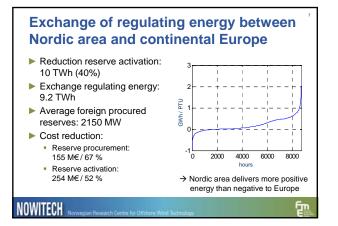


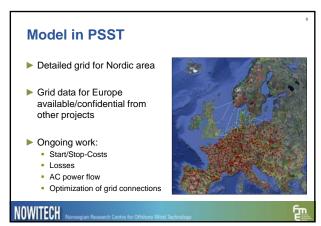
둘

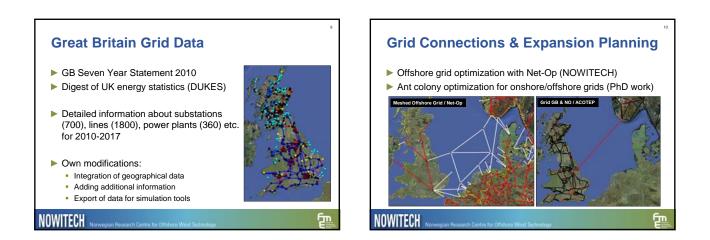

NOWITECH - Norwegian Research Centre for Offshore Wind Technology Postdoc at NOWITECH / NTNU

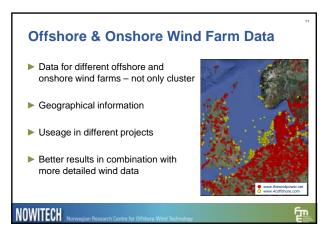

"Balance Management with Large Scale Offshore Wind Integration"

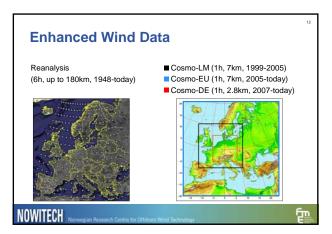

Research activities

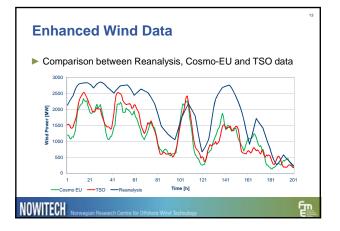

- WP1 integrated numerical design tools
- WP2 energy conversion systemsWP3 novel substructures
- WP4 grid connection and system integration
- WP4 grid connection and system integra
 WP5 operation and maintenance
- WP5 operation and maintenance
 WP6 novel concepts from previous WP

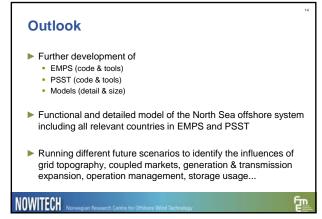

NOWITECH



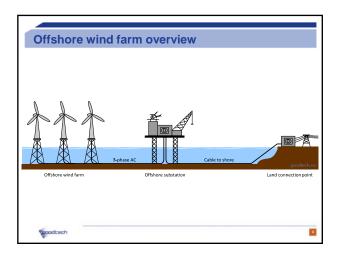




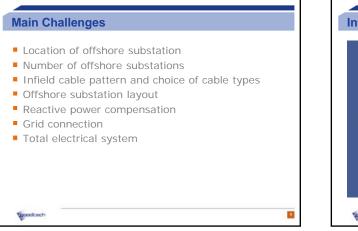


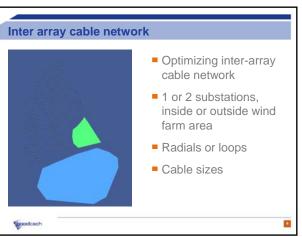


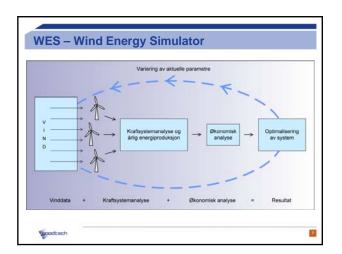
B2) Grid Connection


Challenges and design of offshore substations, Christer Olerud, Goodtech Projects & Services

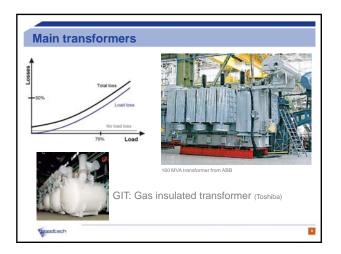
Wind farm measurements and model validation, Prof Kjetil Uhlen, NTNU

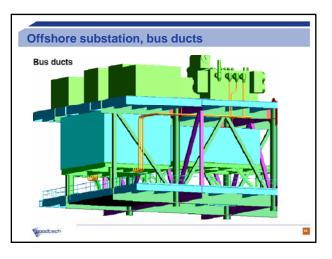

Transient analysis of transformers and cables for offshore wind connection, Bjørn Gustavsen, SINTEF Energi AS

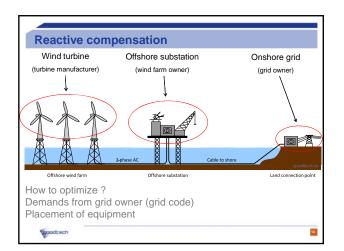


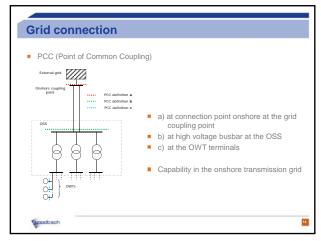




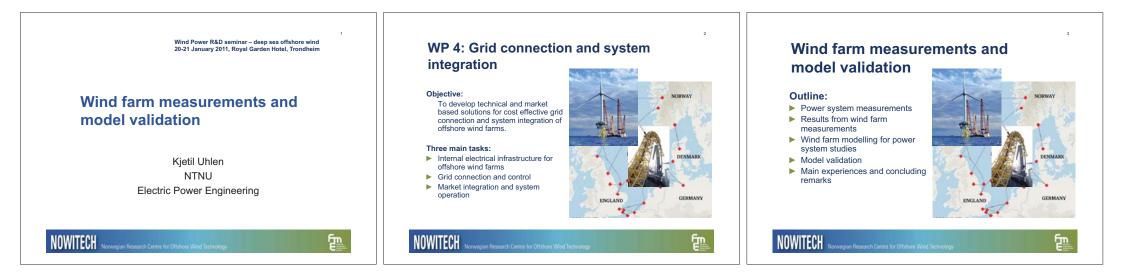


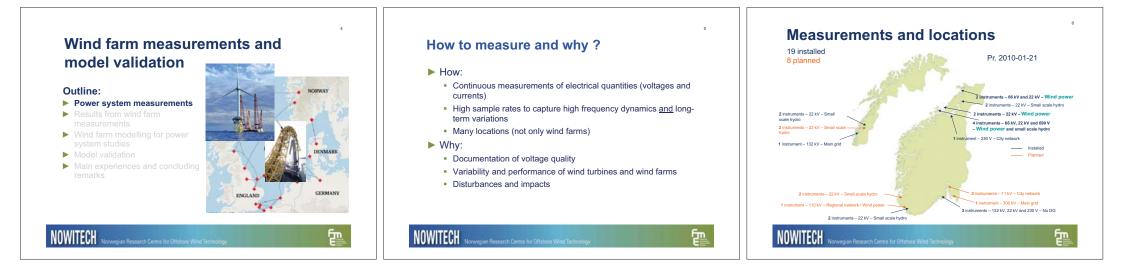


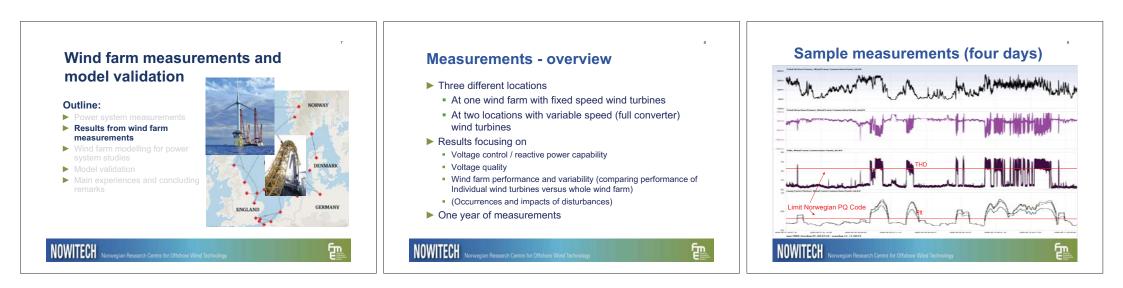


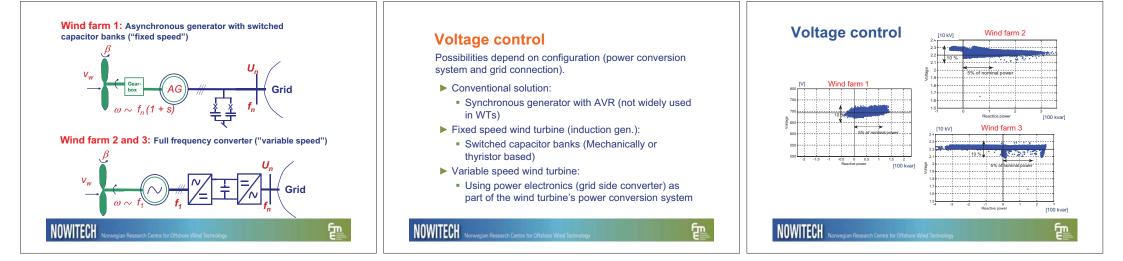


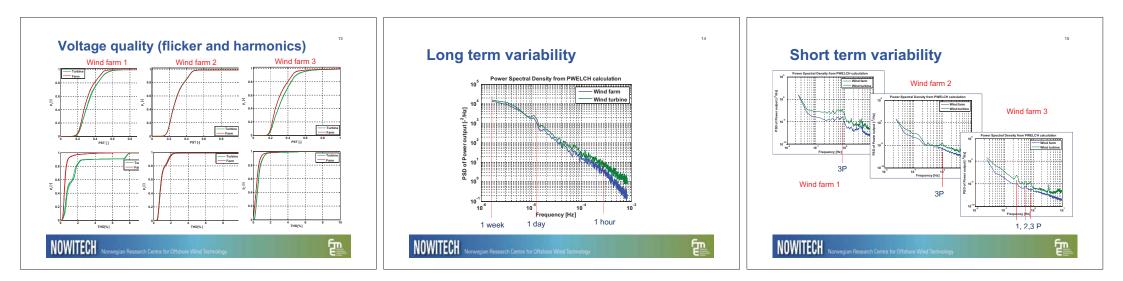


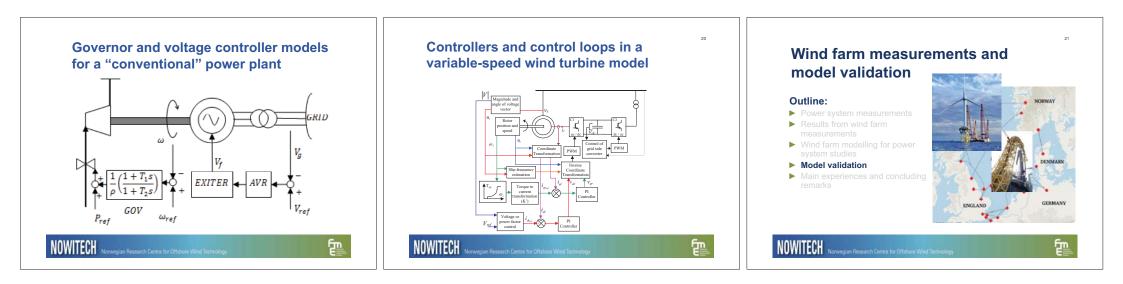


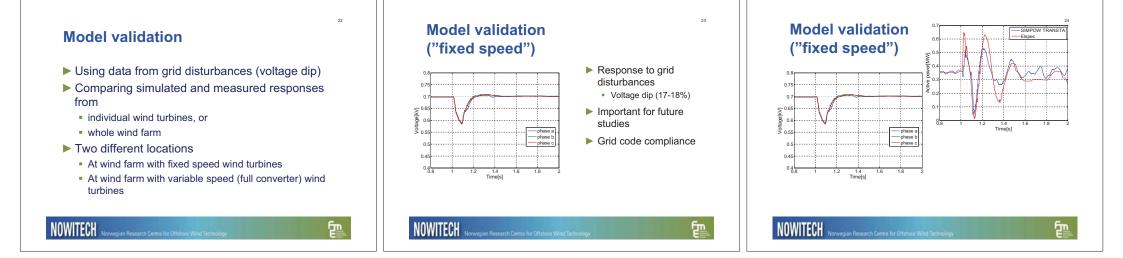


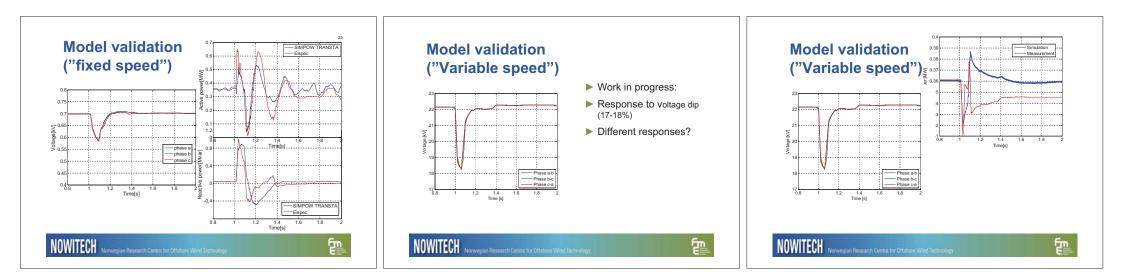


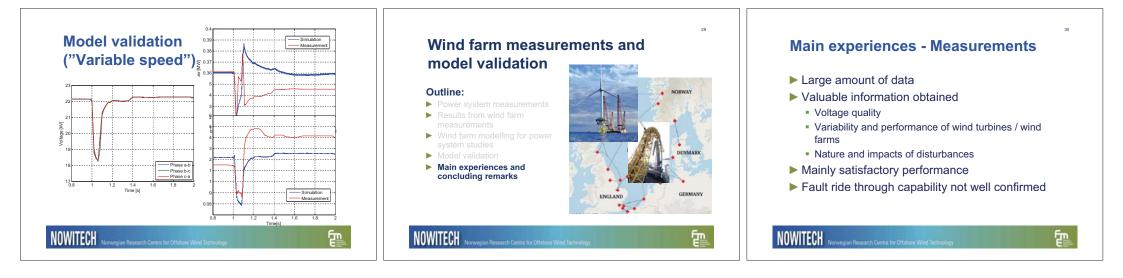


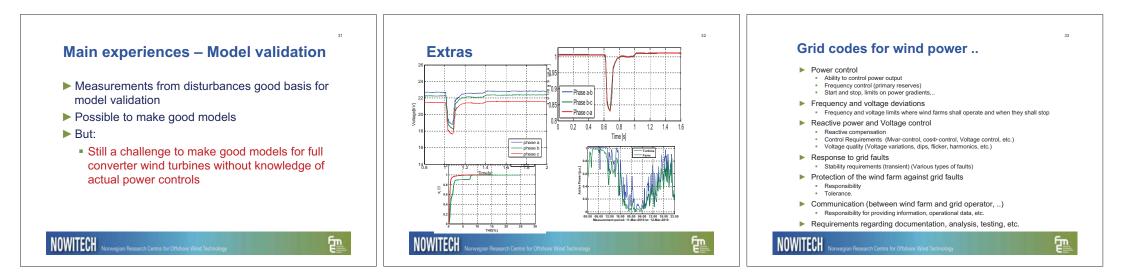


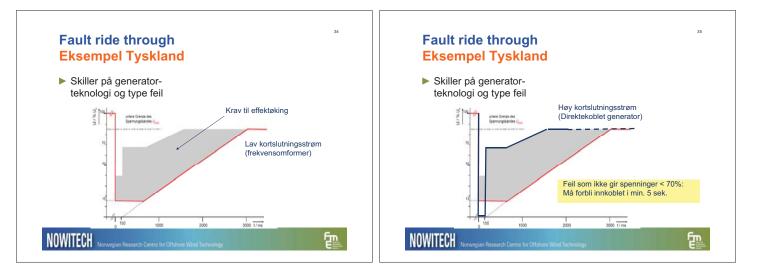


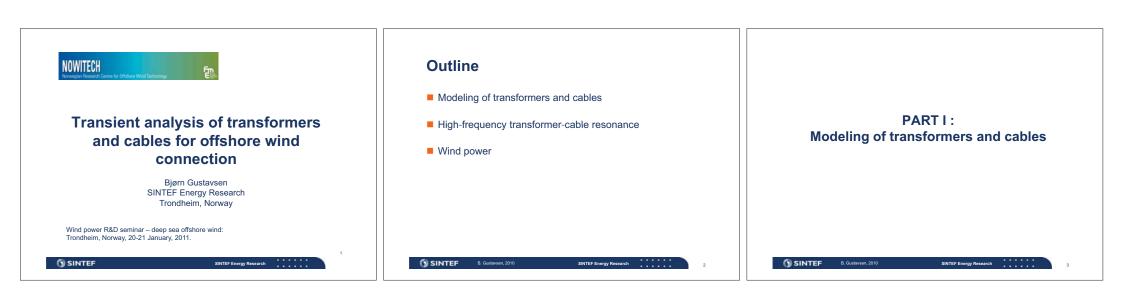


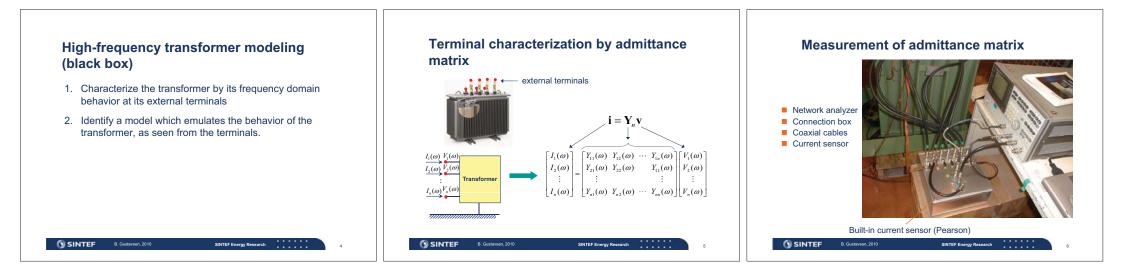


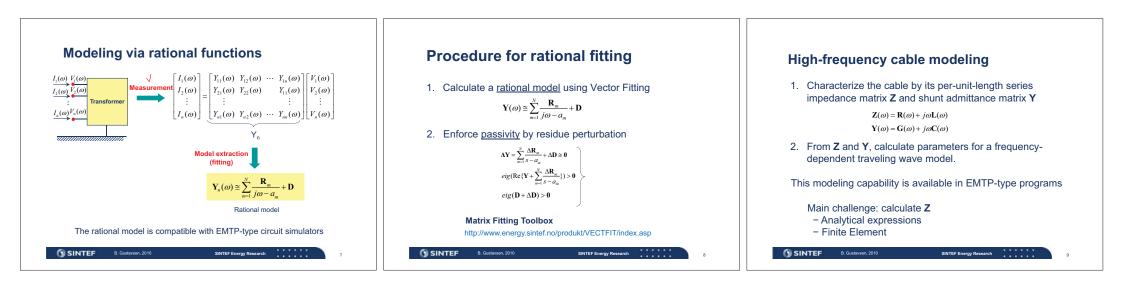


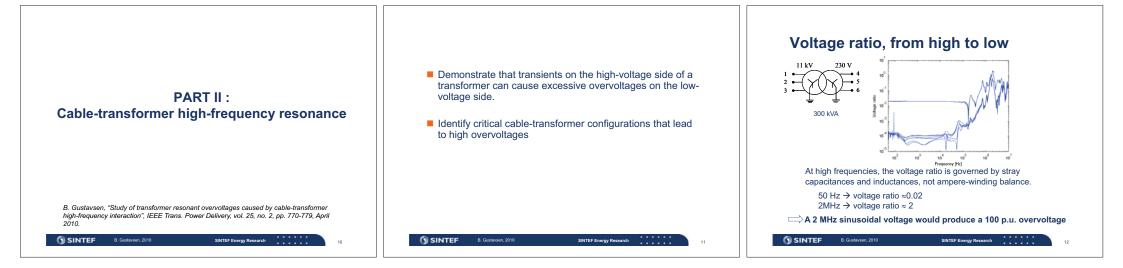


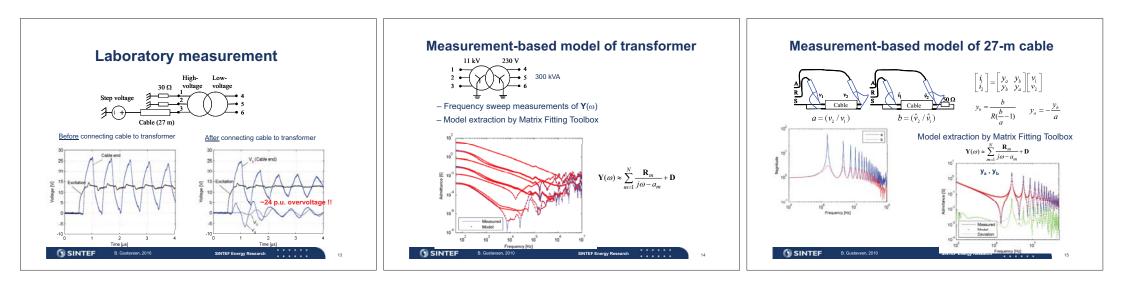


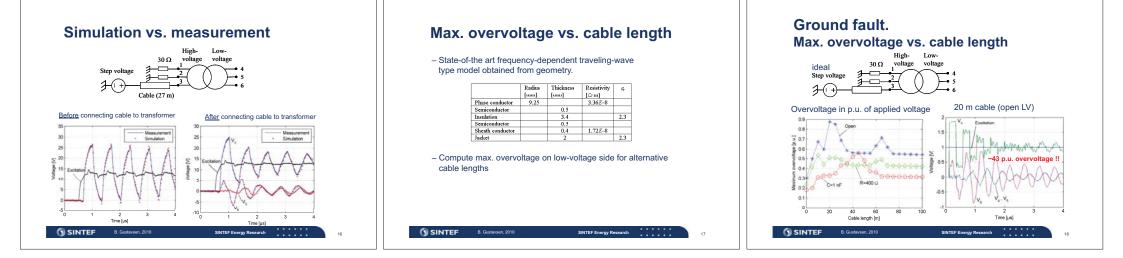


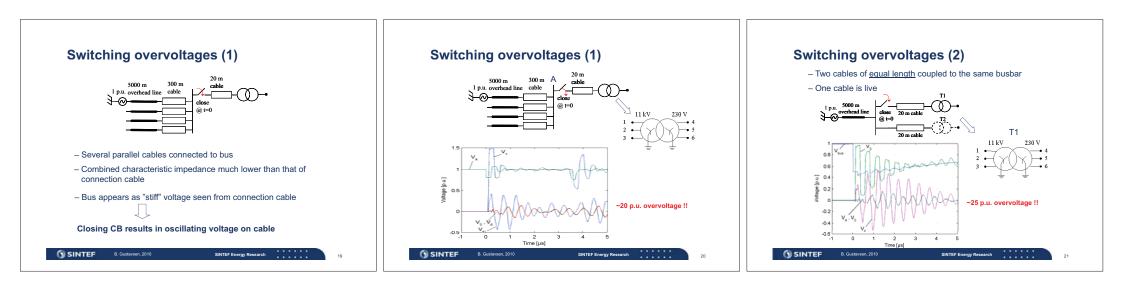


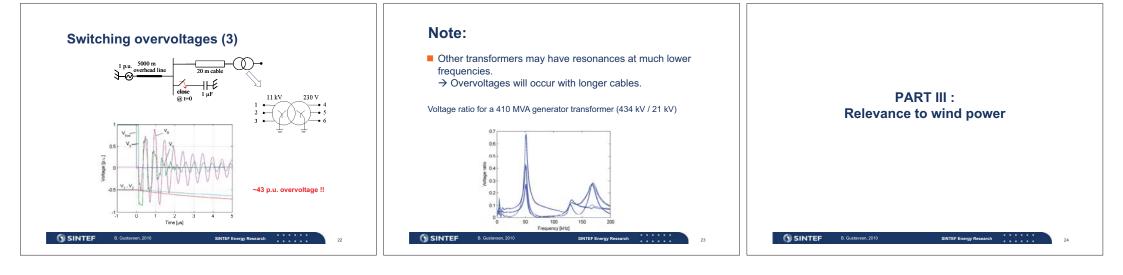


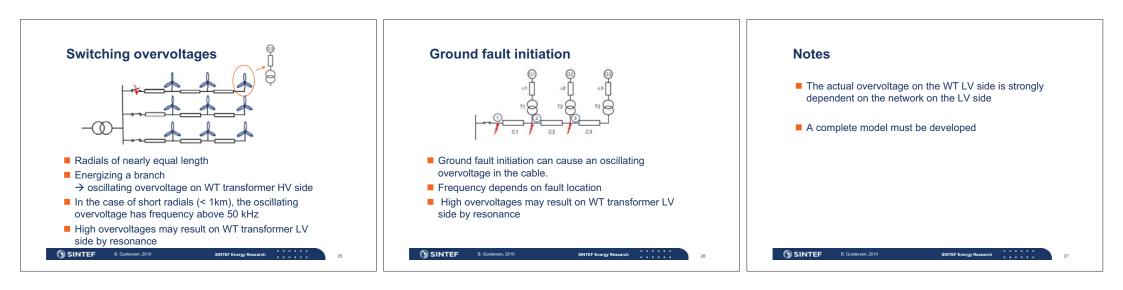




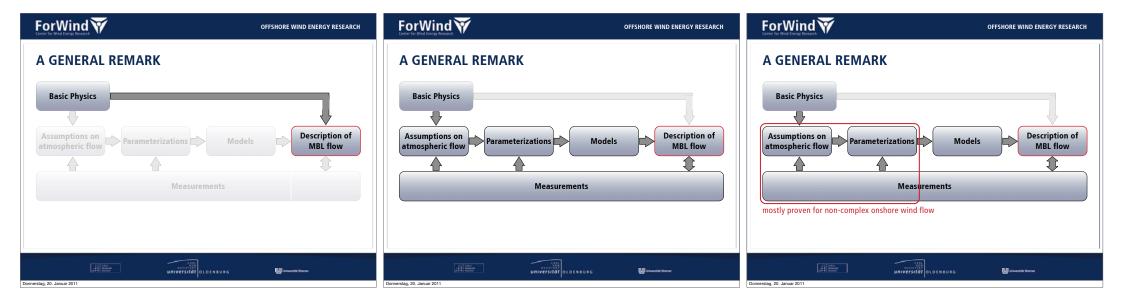






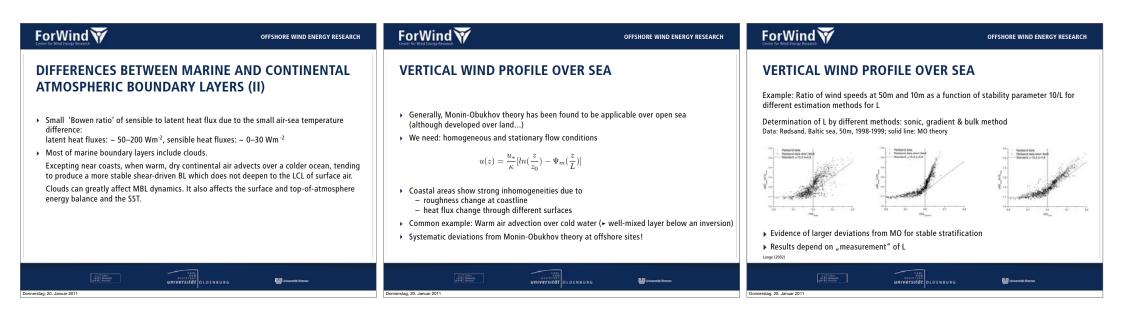


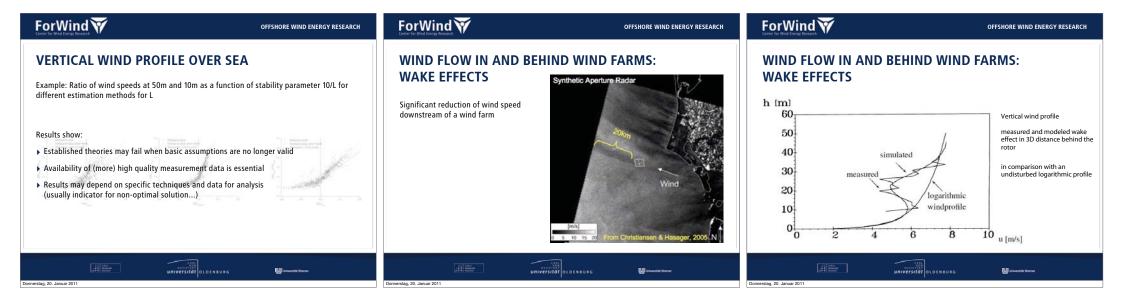
C1) Met-ocean conditions

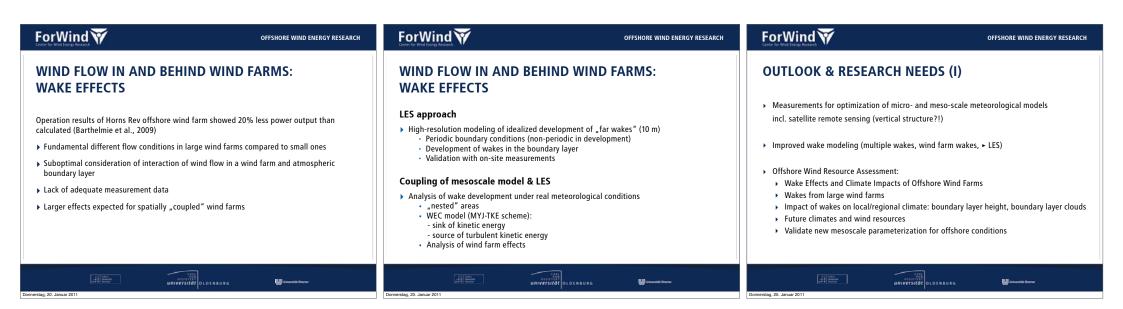

Conditions for Offshore Wind Energy Use, Prof D Heinemann, Uni. Oldenburg

Atmospheric profiling by lidar for wind energy research, Torben Mikkelsen, DTU Risø

From tower to tower, Svein Erling Hansen, Fugro Oceanor

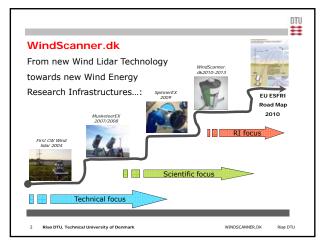

Effects of ocean waves, Alastair Jenkins, Uni Research

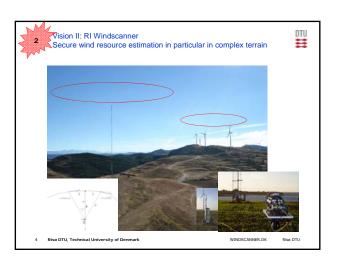


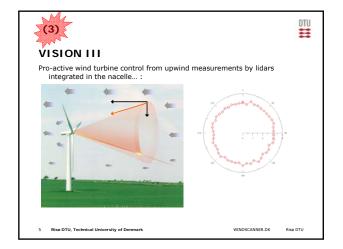


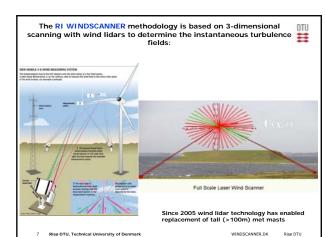
ForWind Wind Energy Research	ForWind	OFFSHORE WIND ENERGY RESEARCH	ForWind 😿	OFFSHORE WIND ENERGY RESEARCH
A GENERAL REMARK Basic Physics Assumptions on atmospheric flow Parameterizations Models Models Description of MBL flow MBL flow MBL flow Measurements mostly proven for non-complex onshore wind flow Finite knowledge of offshore wind conditions limits our modeling success!	ONSHORE (INLAND) vs. OFF Marine winds are fundamentally different for • Still vs. Moving Surface • surface moves under the influence of wind forcing • momentum from tides, ocean currents, and wind- driven currents • wave generation driven by momentum transfer from wind • Land-Water Interface • varying coastal wind effects • regionally important		 MARINE BOUNDARY LAYER MBL is rather shallow compared to continental lifting condensation level) Low variability of sea surface temperature (SS - smaller diurnal oscillation in air temperature) MBL flow is more geostrophic in both speed at atmospheric conditions NWP issues: Errors in model BL profiles of wind, temper convective parameterizations Simple algorithms for wind-wave coupling Lack of real-time data for model initializat Poor resolution of near-surface variables for exact winds (and waves) are often error MBL 	l air masses (higher moisture content > lower T), nearly unlimited energy source and sink and direction as over land given the same rature, and dew point due to turbulence and ion (> data assimilation, > remote sensing)
Dennerstas 20. Januar 2011	Domentag, 20. Januar 2011	OLDENBURG Wowe	Donnerstag, 20. Januar 2011	DLDENBURG 👹 onlanytik Brown

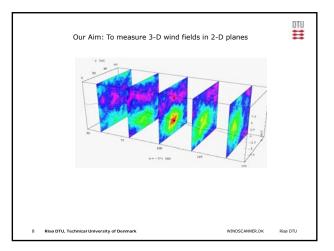
Turbulence (I) Turbulence (II) ATMOSPHERIC BO Mechanical Turbulence • through interaction of the wind and surface air mass with sea surface waves • Due to rising plumes of warm air and compensating downdrafts • Near-surface air is always methad to mater surface air is always methad to mater surface air is always methad to mater surface air mass with sea surface can extend vertically for tens of meters • Due to rising plumes of warm air and compensating downdrafts • Weak diurnal cycle, since sur of water (large heat capacity • Small air-sea temperature dir the water due to radiative co convective turbulence • Stability is the main factor for the depth of frictional coupling in the MBL due to convective turbulence • Stratified lower atmosphere: Mixing is minimal and the surface air mass will be decoupled from the winds aloft • The MBL air is usually radiati sensible heat fluxes off the or senser or sensible h		ForWind W Offshore wind energy research ForWind W Offshore wind energy research
 b through interaction of the wind and surface air mass with sea surface waves c through interaction of the wind and surface air mass with sea surface waves c resulting eddies formed by the rising and falling sea surface can extend vertically for tens of meters c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical near-surface wind shear c Extent of eddies is based on wave height and vertical nea		ATMOSPHERIC BOUNDARY LAYERS (I)
	 through interaction of the wind and surface air mass with sea surface waves resulting eddies formed by the rising and falling sea surface can extend vertically for tens of meters 	 Due to rising plumes of warm air and compensating downdrafts Range from 100 to more than 1000 m height Stability is the main factor for the depth of frictional coupling in the MBL due to convective turbulence Stratified lower atmosphere: Mixing is minimal and the surface air mass will be decoupled from the winds aloft Temperature difference between rather constant SST and temperature of overlying air Weak diurnal cycle, since surface energy fluxes distribute over a large depth (10–100+ m) of water (large heat capacity!) Small air-sea temperature differences, except near coasts. Air is typically 0–2 K cooler than the water due to radiative cooling and advection, except for strong winds or large sea-surface temperature (SST) gradients. The MBL air is usually radiatively cooling at 1–2 K/day, and some of this heat is supplied by sensible heat fluxes of the ocean surface. If the air is much colder than the SST, vigorous convection will quickly reduce the temperature difference.

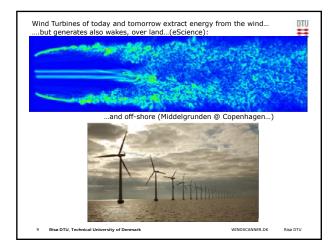


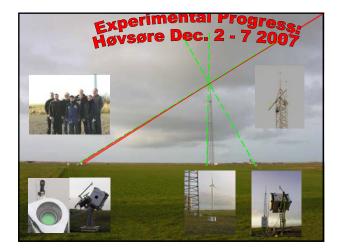


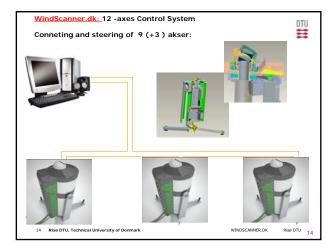


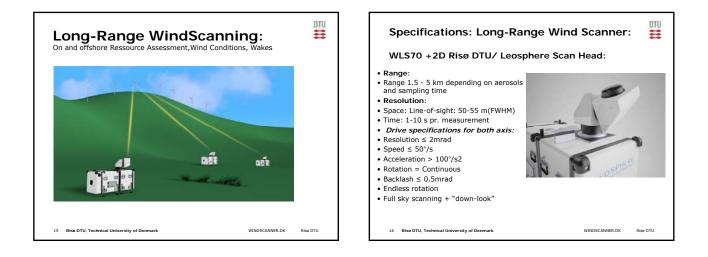


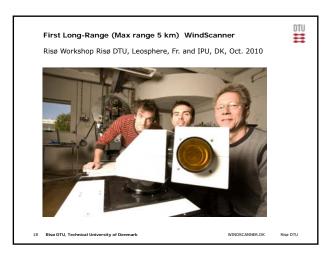


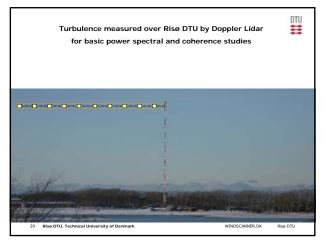


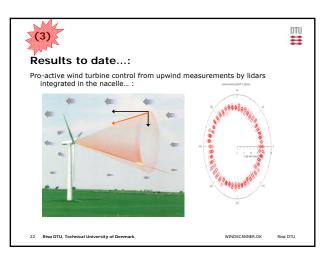


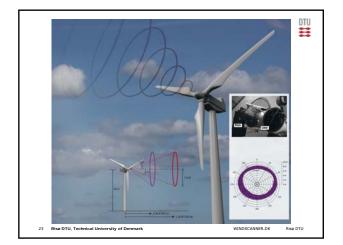


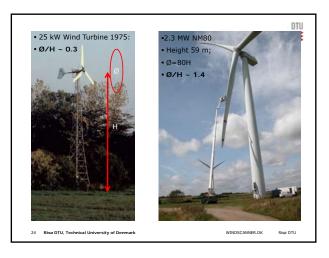


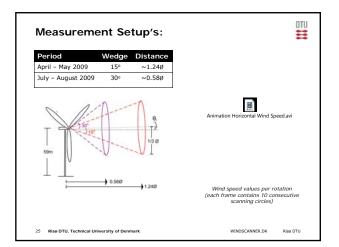


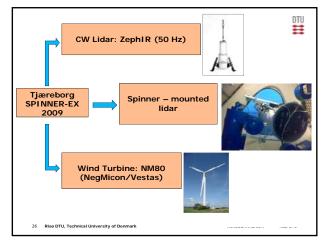


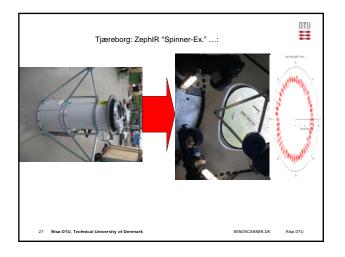


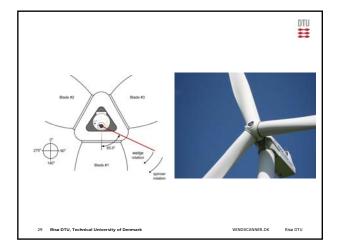


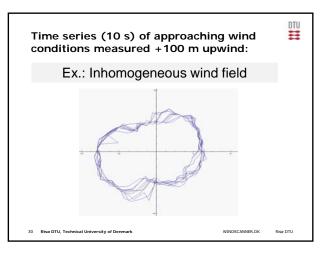


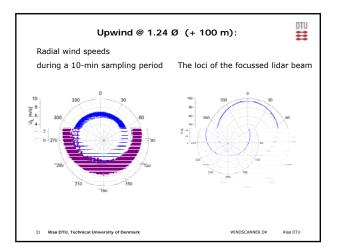


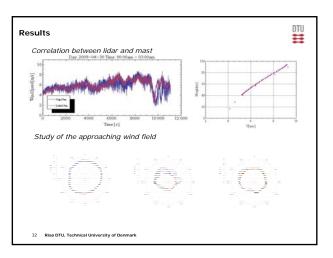


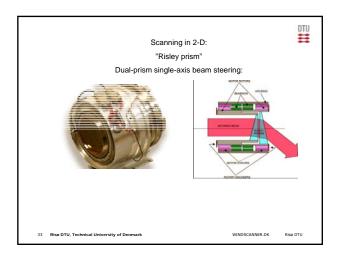


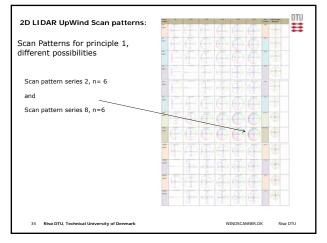


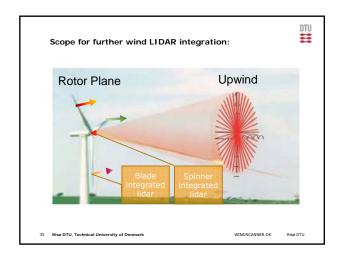


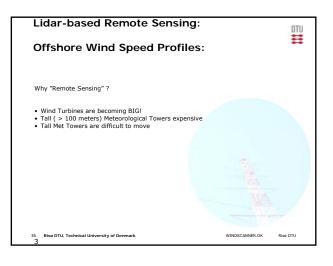


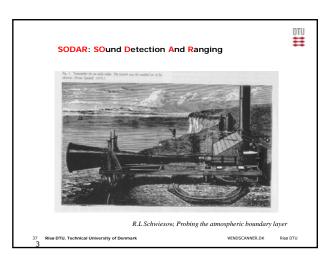


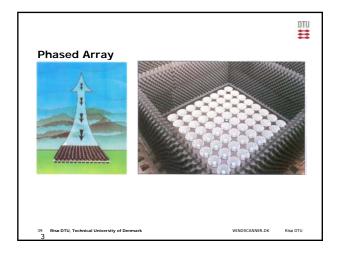


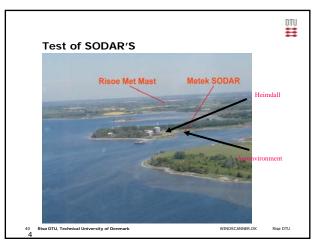


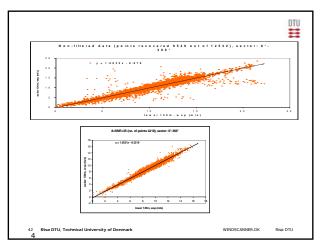


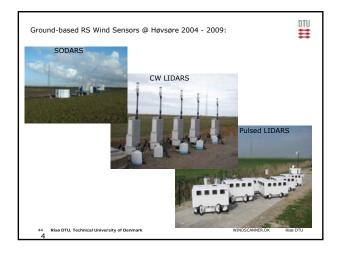


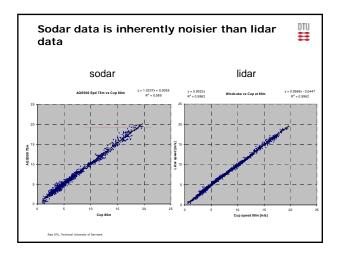


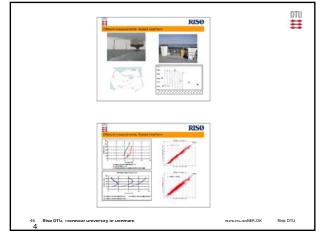


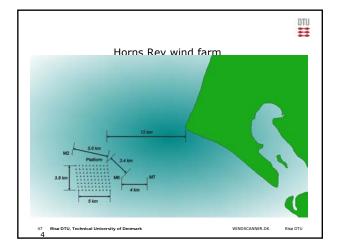


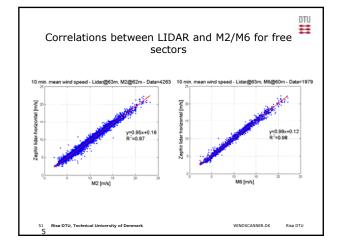


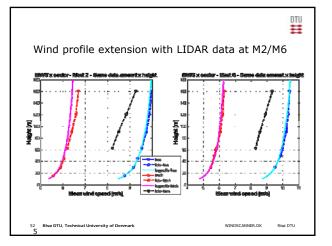


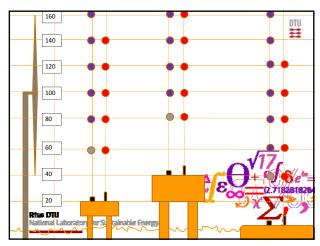


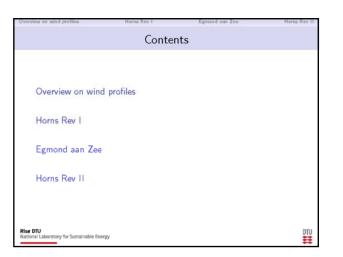


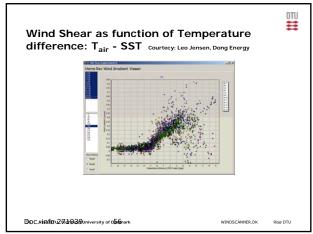


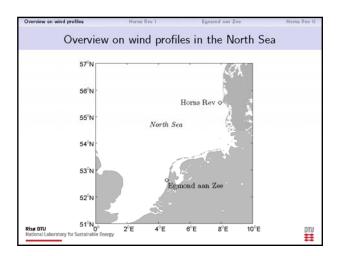


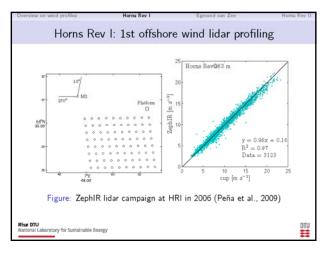


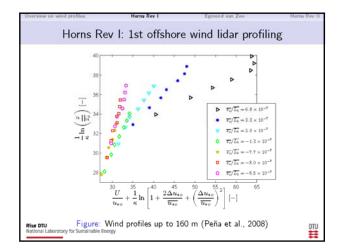


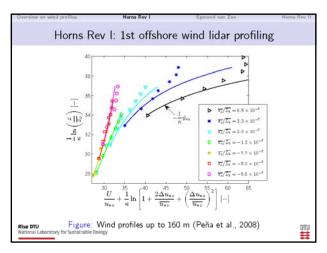


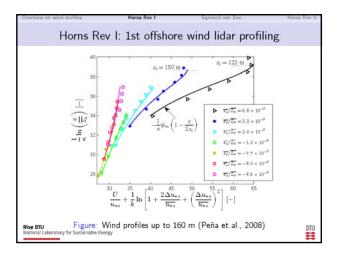


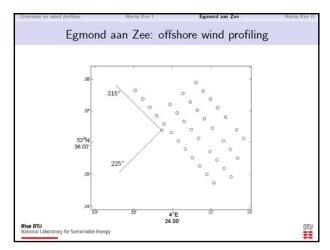


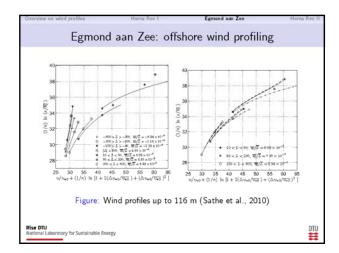


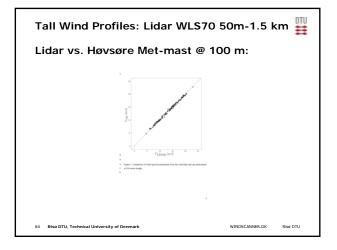


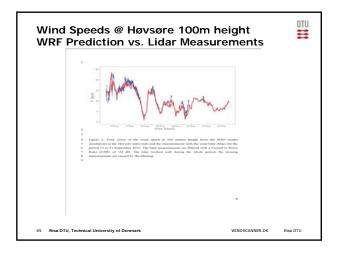


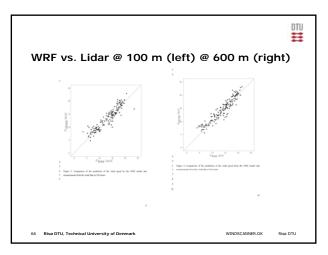


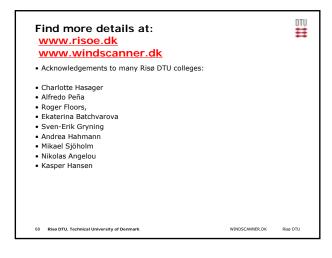


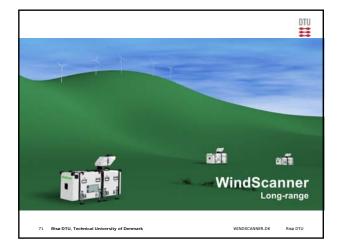


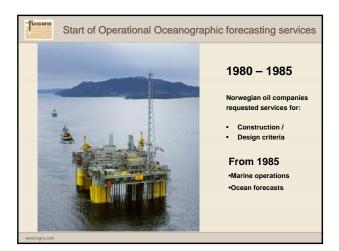


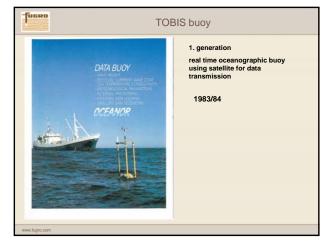


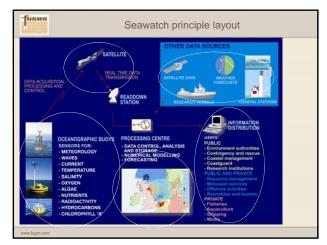


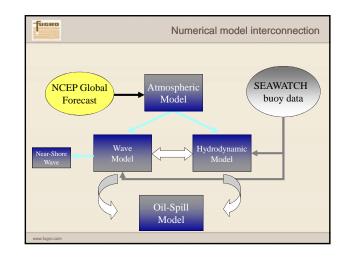


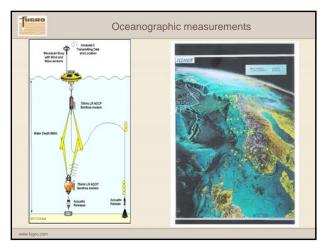


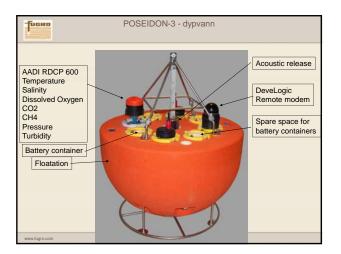


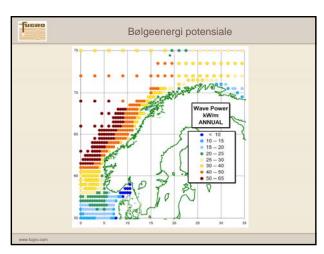




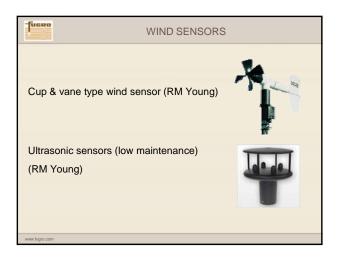


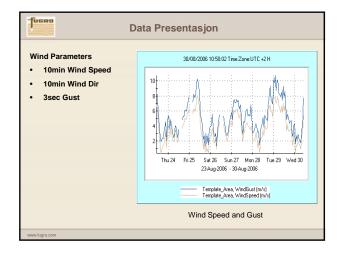


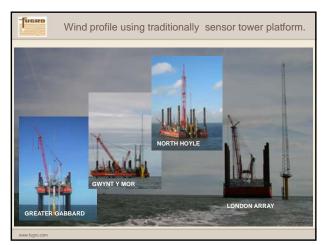


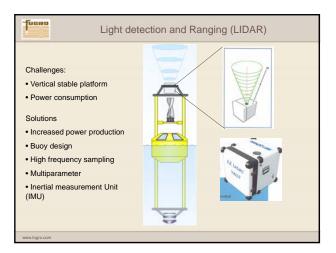


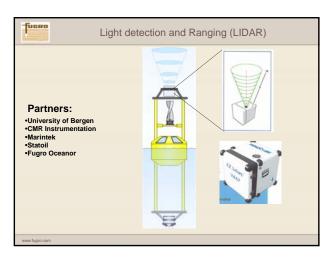


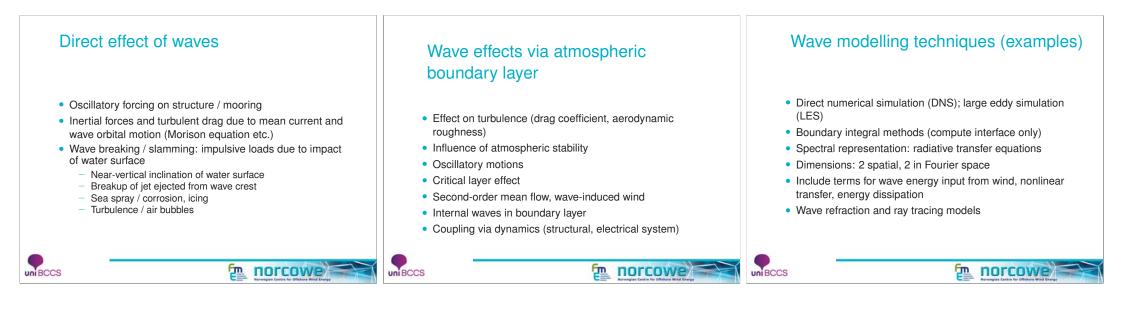


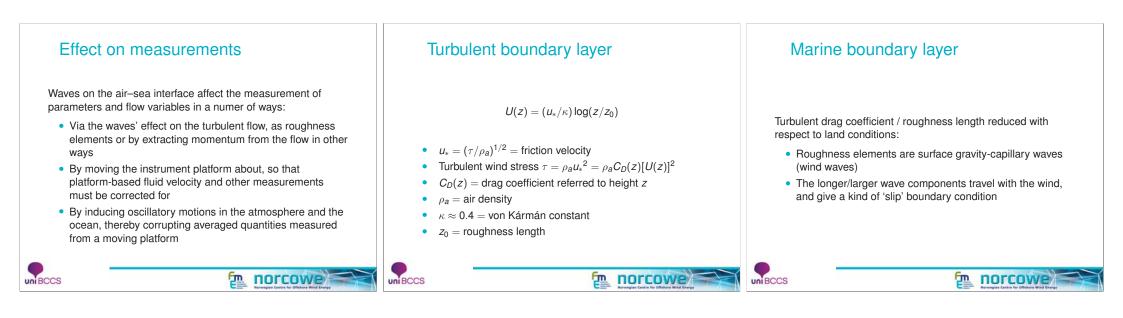


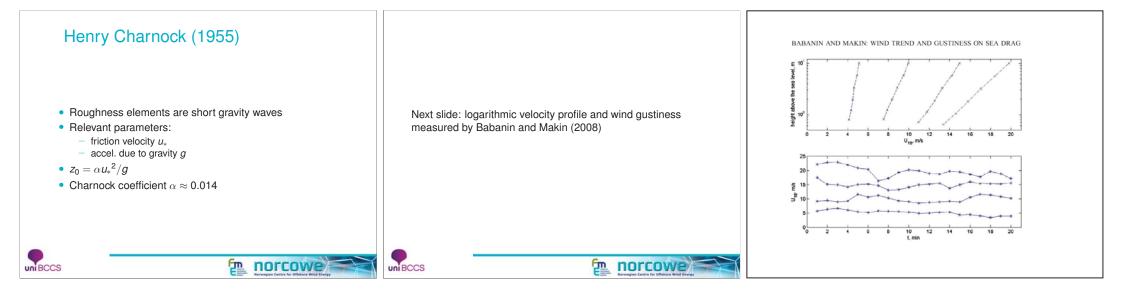


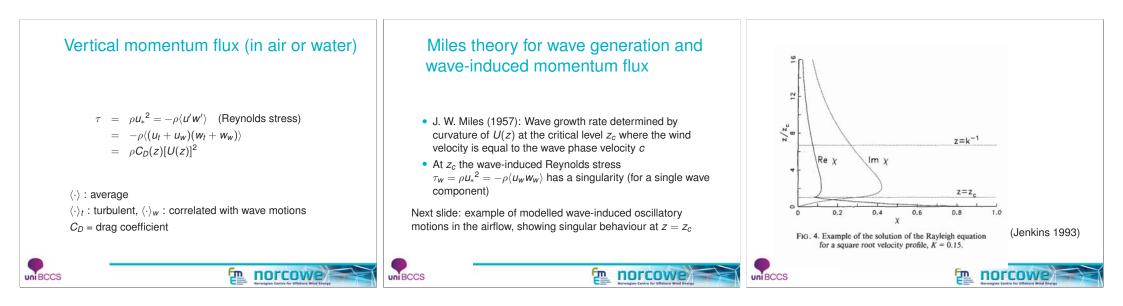


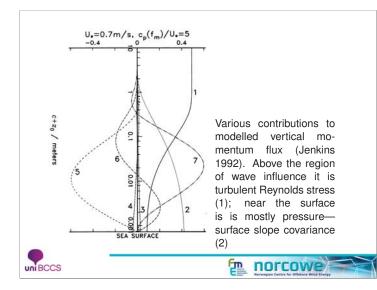




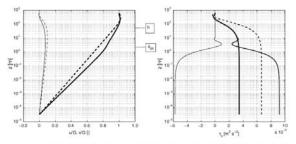
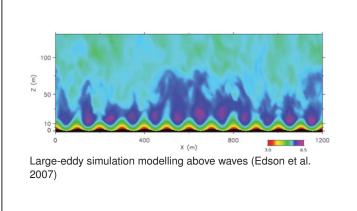
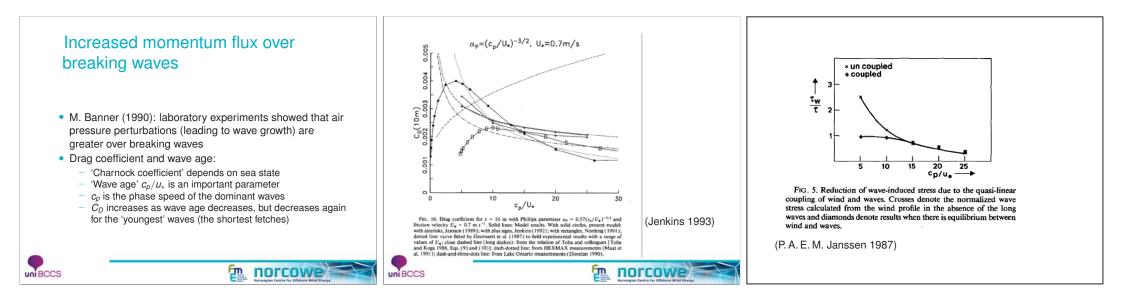
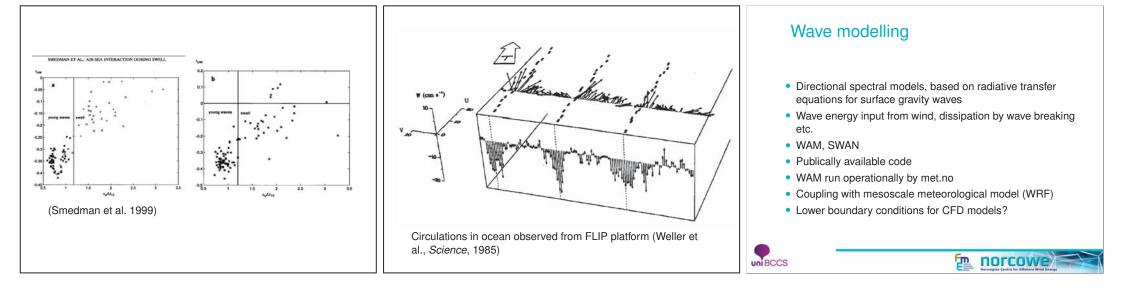
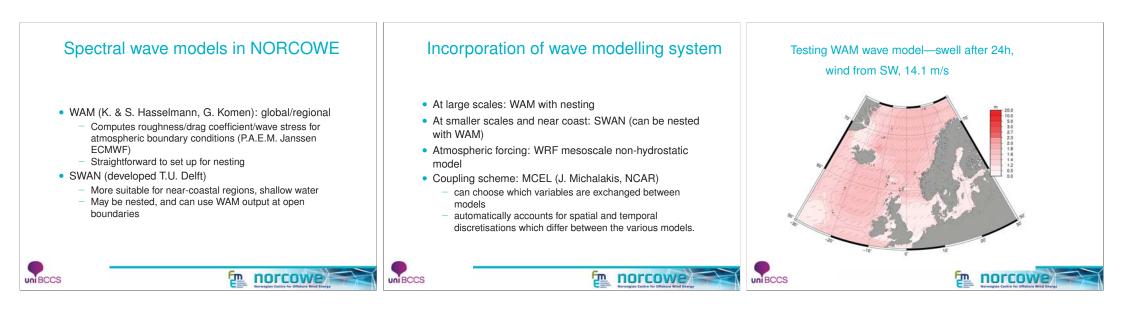

AMASS- Autonomous Marine Surveillance System) Network of observing platforms - Acoustic and visual sensors Challenges Energy demand Strategy/Solutions Wind and Fuel cell technology (100W) Sunlight power production - Battery EU – 7. ramme program (10 partnere) Project leader: Carl Zeiss Project period 2008-2011 www.fugro.com

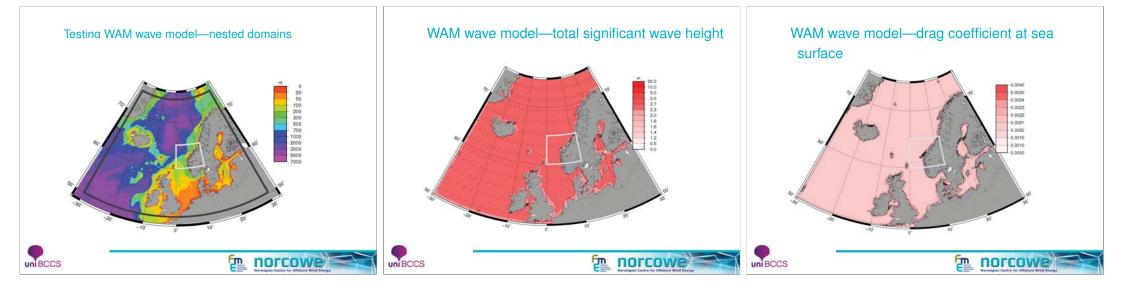


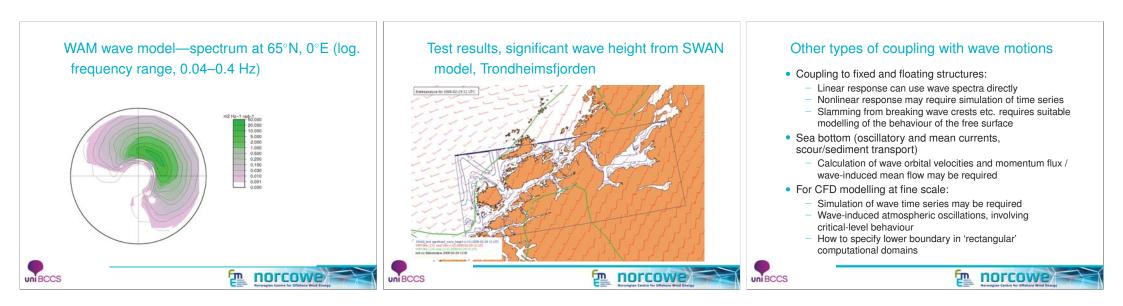

-Fuceo



Wave and turbulent stress computed by Makin (2008)


Fig.1 Left. Wind-speed components. Thick solid line—u-component; thin solid line—u-component; swell is present, $a_c = -0.62$. ($C_{\beta} = -500$, AK = 0.053). Thick dashed line—u-component; thin dashed line—u-components are shown). Thick solid line—total stress; medium solid—turbulent stress; thin solid—wave-induced stress; swell is present. Dashed line—turbulent stress; no, so swell. The heights of the inner region δ_{IR} and the atmospheric surface layer h are shown by horizontal lines crossing the vertical axis

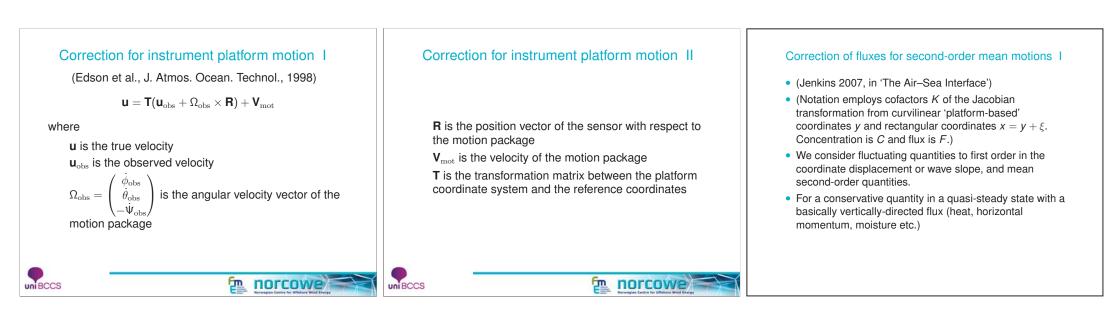


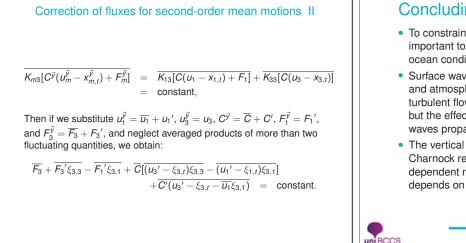
Motion corrections I

UNBCCS

- Interpretation of observations near the sea surface can be difficult in the presence of surface waves and the associated motions of the air and water
- If measurements are made from a platform which moves with the waves etc. it is necessary to correct velocity observations for the motions of the platform
- Wind lidar instruments will be particularly affected by tilt motions which will significantly alter the position of the target at up to several hundred metres altitude.

morcowe


UNBCCS


Motion corrections II

- Averaged quantities, such as mean current, turbulent fluxes of momentum, heat, and mass, etc., may be systematically affected by correlations between the velocity of the platorm and its position.
- Ocean current observations are particularly subject to contamination from the movement of, for example, a surface-following mooring buoy or ADCP platform (e.g., R. T. Pollard 1982).
- The possible errors in these quantities should be estimated - if they are not too great one may be able to use analytical expressions (perturbation theory) for the corrections

m norcowe

Concluding remarks

- To constrain offshore wind power development costs, it is important to characterize the marine boundary layer and ocean conditions
- Surface waves affect the physical properties of the ocean and atmosphere: they can act as roughness elements for turbulent flow in the marine atmospheric boundary layer, but the effective roughness length is reduced because the waves propagate with the wind
- The vertical flux of momentum can be determined by the Charnock relation with a friction velocity (or wind speed) dependent roughness length. The parameter in the relation depends on the wave age

m norcowe

UNBCCS

Concluding remarks II

- Field observations in the wave-induced boundary layer may be challenging
- It is often necessary to use measurement platforms which move with the sea surface
- Air/water velocities may be corrected for if motion sensors are available
- Other problems: Flow distortion by measurement platform structure (may use e.g. CFD model to evaluate/correct)
- Additional problem: bias in average velocity (wind/current) and fluxes (momentum, heat) due to platform motion correction of this may require perturbation expansion of flow field to second order in wave slope known problem for current measurements

m norcowe

Concluding remarks III

- For instrument platforms subject to wave motion, corrections of the observations are essential for velocity and some other quantities
- Averaged winds, currents, turbulent fluxes may in addition have biases due to correlation between platform and oceanic/atmospheric motions which may need to be taken into account
- It is anticipated that ocean currents/turbulence and wind lidar observations from moving platforms may be significantly affected by these phenomena

Concluding remarks IV

- **Types of model** which may be employed to investigate wave effects:
 - Spectral wave prediction model of type WAM, SWAN
 - Wave model for small scales, simulating individual waves, diffraction by structures
 - Turbulent boundary-layer model
 - Iterative model of linear (Orr-Sommerfeld equation) and second-order response of turbulent boundary layer to wave motions
 - CFD simulations, accounting for wave-induced perturbations at lower boundary
 - Ocean circulation models, for tides/currents/marine ecology

norcowe

Concluding remarks V

Model validation

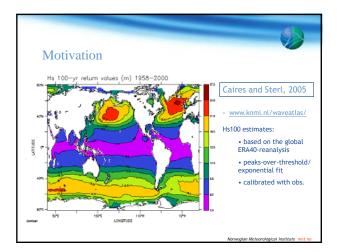
UNIBCCS

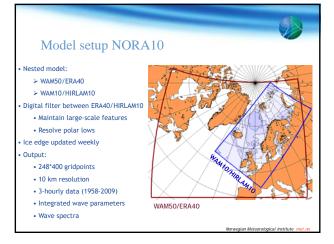
- The models need to be evaluated using dedicated field observations.
- It is important to conduct observations which may elucidate the phase relations between the wave-induced movements of the sea surface and those induced in the atmosphere
- The effects on the ocean circulation also need to be accounted for: wind turbine structures may affect marine ecological processes

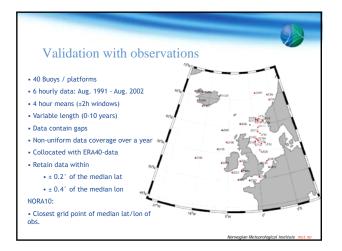
morcowe

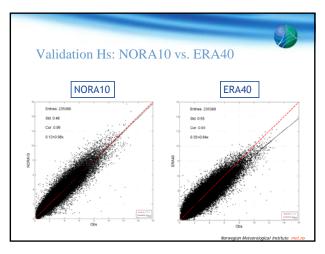
UNIBCCS

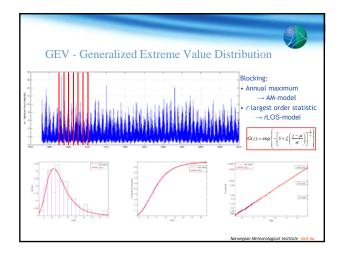
C2) Met-ocean conditions

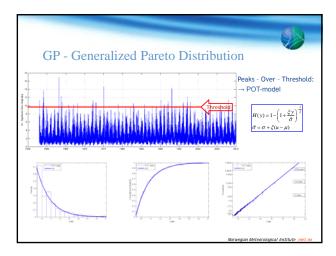

Wave extremes in the Northeast Atlantic, Ole Johan Aarnes, met.no

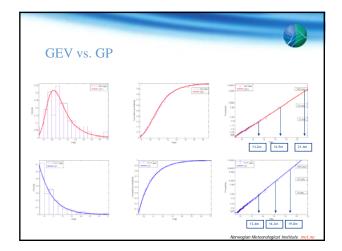

The HyWind forecasting project, Birgitte Furevik, met.no

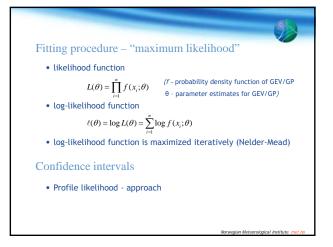

A comparison of Sonic Anemometer- and lidar-sensed wind velocity data at Frøya test site, PhD stud Fabio Pierella, NTNU

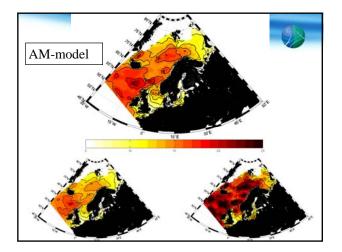

Design and operation of floating met-masts, Israel Pinto Grijuela, Grupo APIAXXI

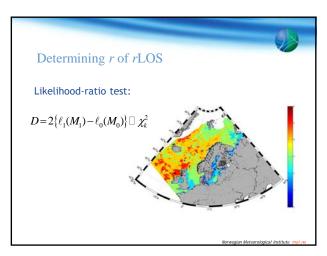


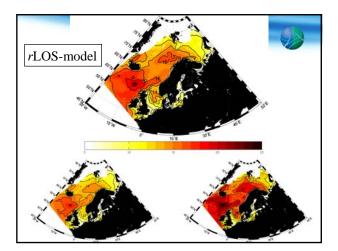


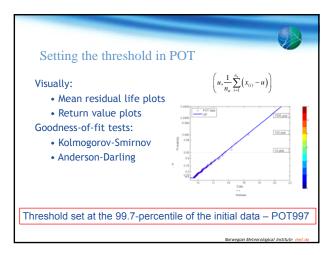


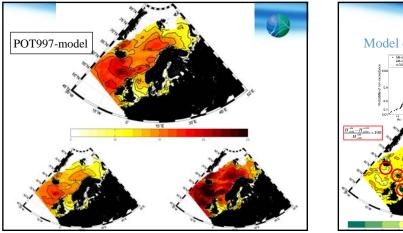


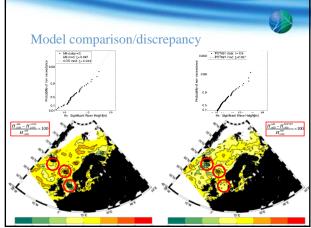


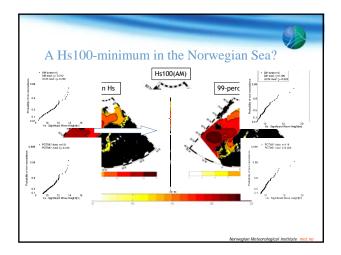


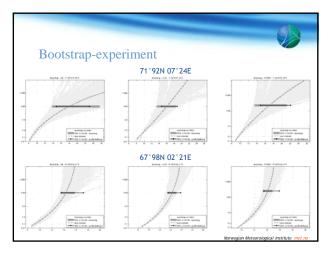


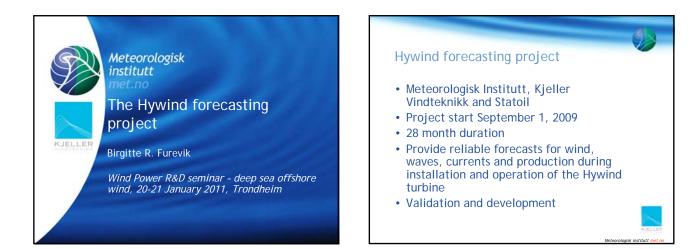


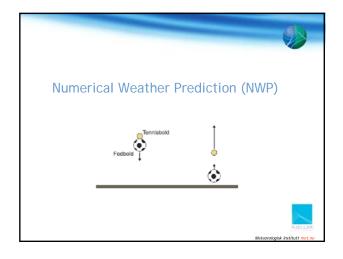




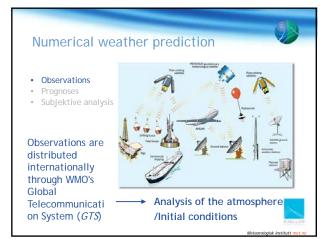


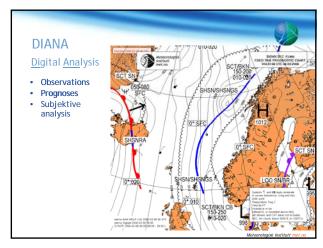


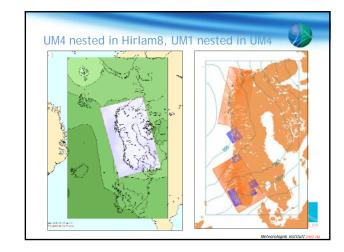


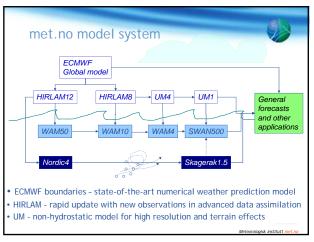


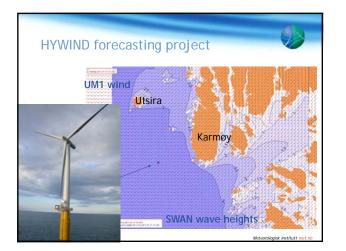
Conclusions

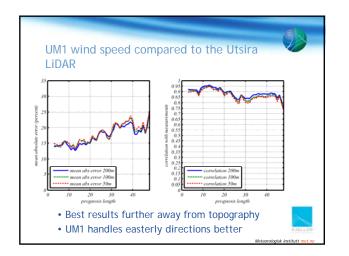

- We have obtained Hs100 estimates for the Northeast Atlantic using three different data subsets, i.e. the AM, the rLOS and the POT based on a hindcast
- Overall, the best fit is obtained with the AM and the POT997
- Paradox: Bigger subsets \rightarrow higher "confidence" \rightarrow not necessarily a better fit
- However, provided conformity between model and data, the biggest data subset is recommended
- Unlike the general wave climate, we find evidence for a local minimum in the Hs100 estimates in the central Norwegian Sea (further work)

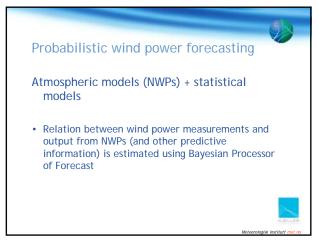

Hurrican Lili - September 2003 Thank you!

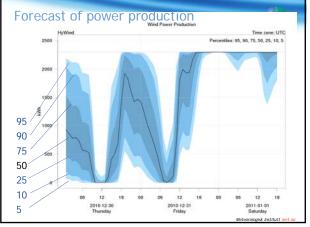


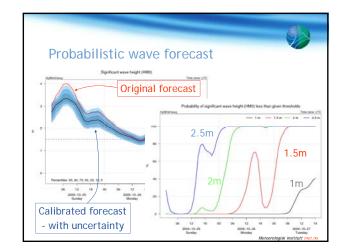


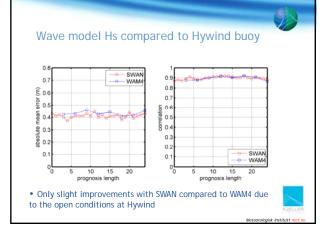


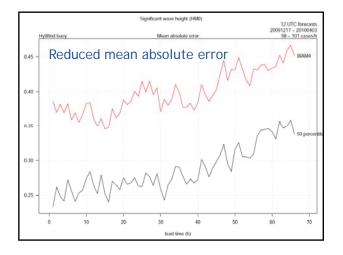


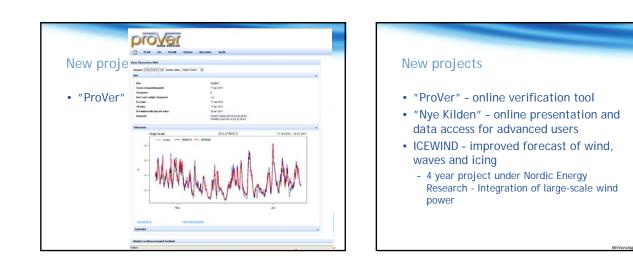


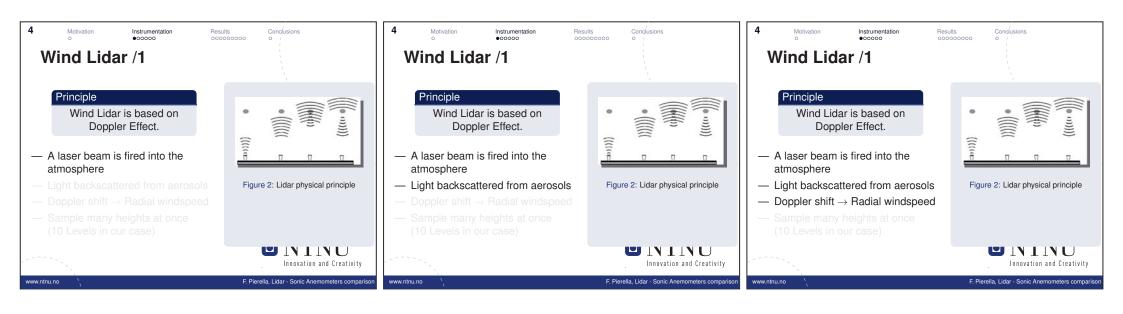


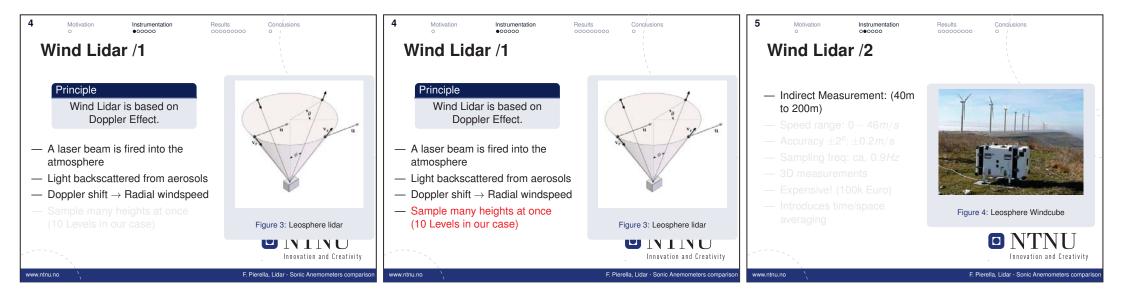




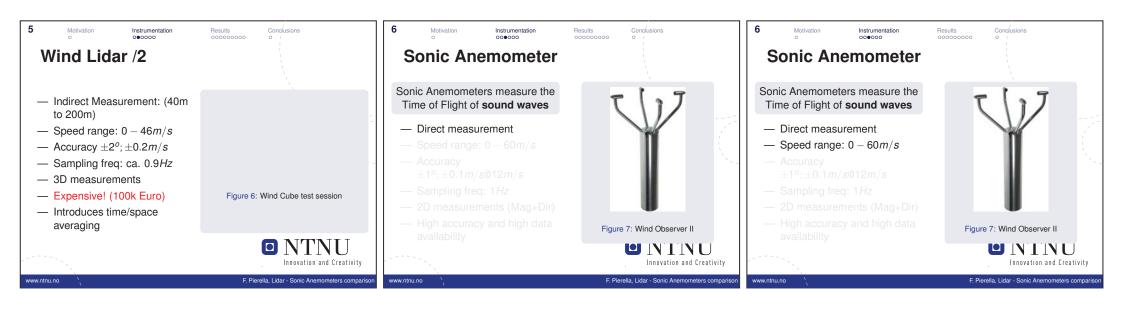


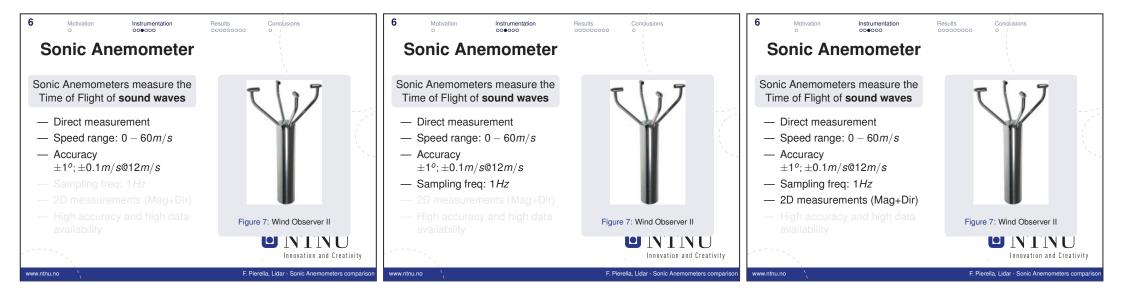


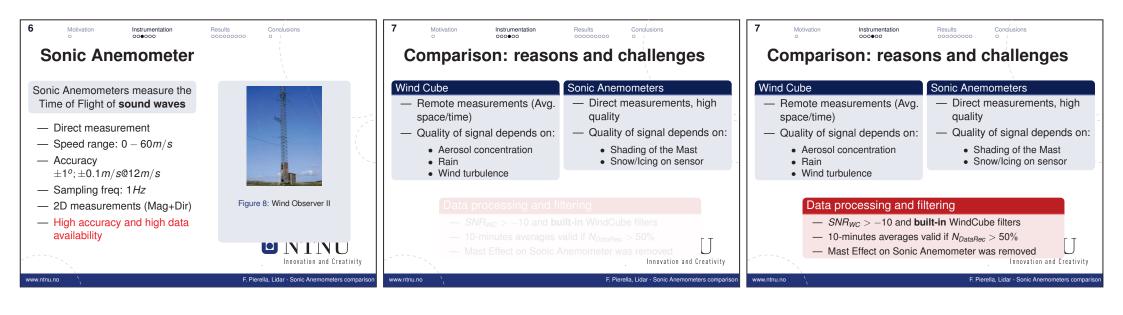


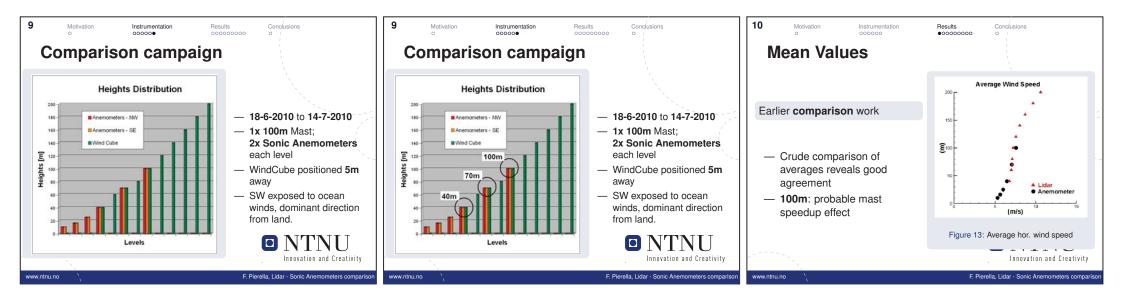


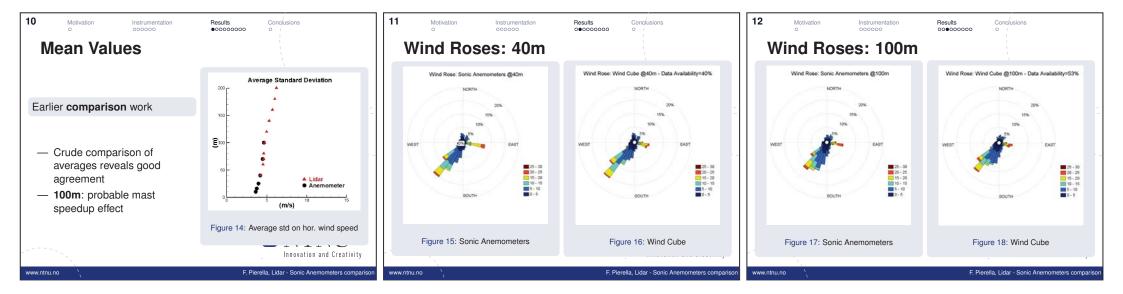
1 Motivation Instru o oooc	nentation Results Conclusions 200000000 o	2 Motivation Instrum	entation Results Conclusions o ocoococo o	2 Motivation Instrumentatio	on Results Conclusions 00000000 0
D NT	NU and Creativity	Motivation		Motivation	
		Instrumentation		Instrumentation	
	on of Sonic Anemometer- and d wind velocity data at Frøya test sit	e.		Results	
F. Pierella fai	io.pierella@ntnu.no	Conclusions		Conclusions	
Energy and F 20. Jan 2011	rocess Engineering		D NTNU Innovation and Creativity		D NTNU Innovation and Creativity
www.ntnu.no \	F. Pierella, Lidar - Sonic Anemometers co	mparison www.ntnu.no \	F. Pierella, Lidar - Sonic Anemometers comparison	www.ntnu.no \	F. Pierella, Lidar - Sonic Anemometers comparison

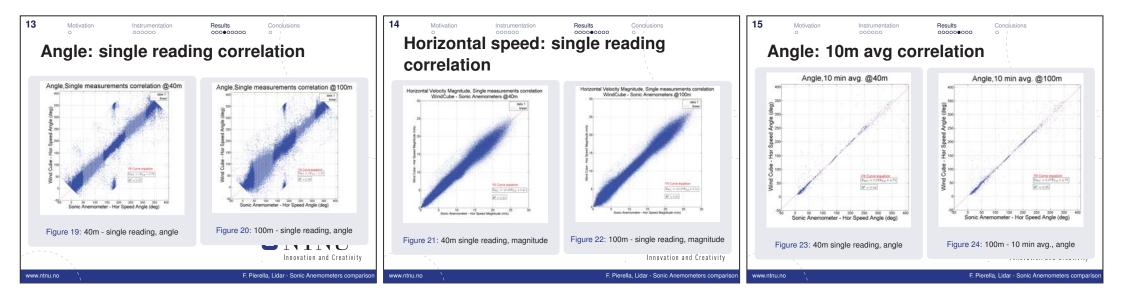

2 Motivation	Instrumentation Results Conclusions	2 Motivation Instrumentation	Results Conclusions	3 Motivation Instrumentation	Results Conclusions
Outline		Outline		Purpose of the work	
Motivation		Motivation			en the performances of Sonic Anemometers
Instrumentation		Instrumentation		— Measure maritime wind	
Results		Results		@heights (0-200m) relevant for Wind Energy	T(1,1) T(1,2) T(1,2) T(1,2) Total State Total State
		Conclusions		— LiDAR: remote measurement	Can the Comment
	NTNU		NTNU	 — Sonic Anemometer: direct measurement 	Figure 1: Offshore Wind measurements
	Innovation and Creativity		Innovation and Creativity		Innovation and Creativity
www.ntnu.no	F. Pierella, Lidar - Sonic Anemometers compari	on www.ntnu.no \	F. Pierella, Lidar - Sonic Anemometers comparison	www.ntnu.no	F. Pierella, Lidar - Sonic Anemometers comparison

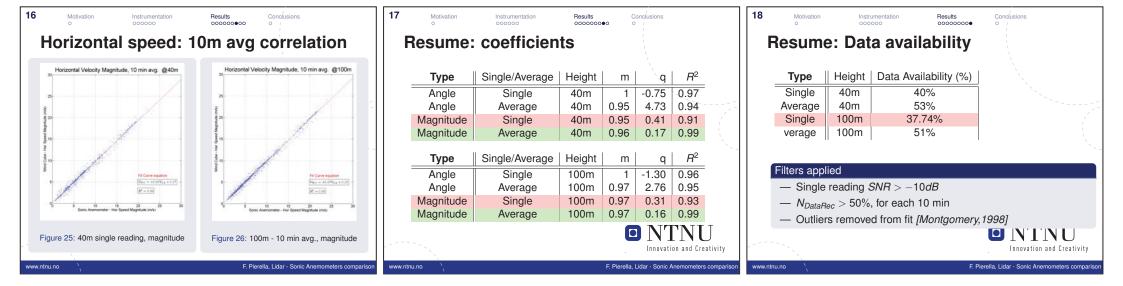


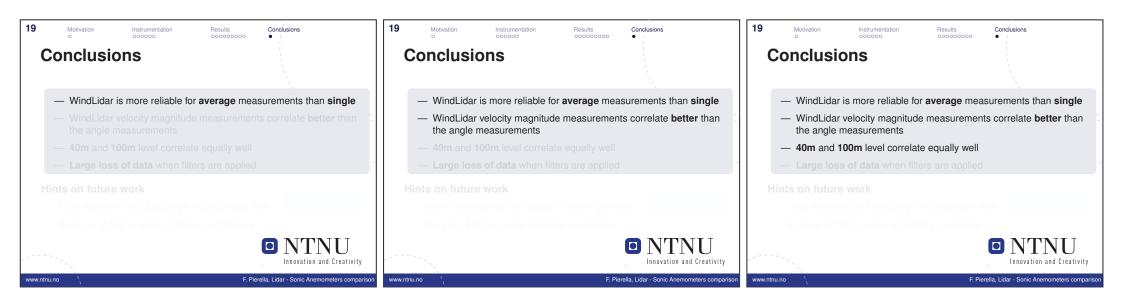


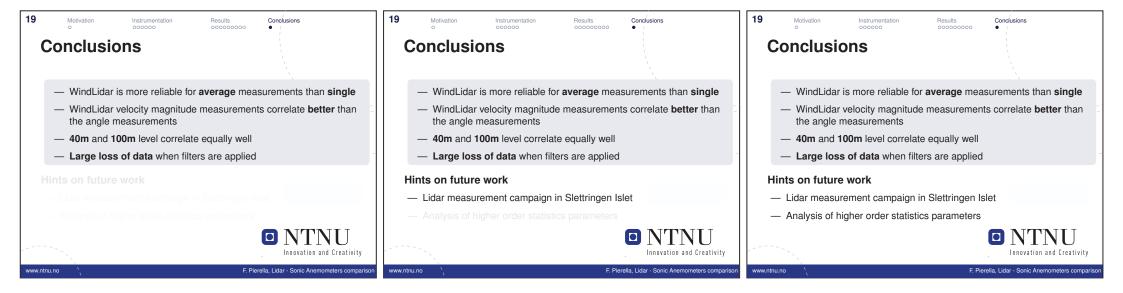


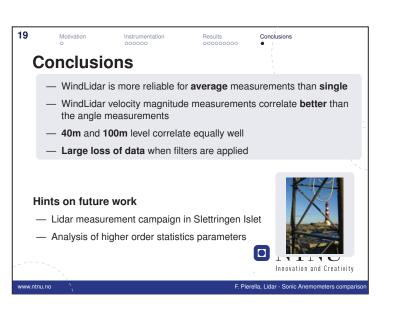


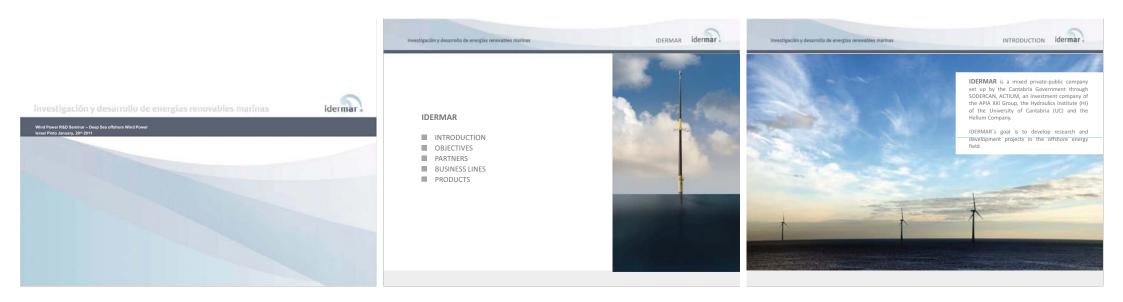












HI Cantabria is a mixed research institute between the University of Cantabria and the FIHAC Foundation, where the Government of Cantabria takes part. The Institute's goal is to set itself up as an international referent of basic and applied investigation and the development of studies, methodologies and tools for the management of aquatic ecosystems, including surface and underground continental waters, transition waters and coastal waters. Among its objectives, the following are included:

To study in depth the water cycle and its related systems.
 To train top researchers and specialists in the environmental bydraulic field

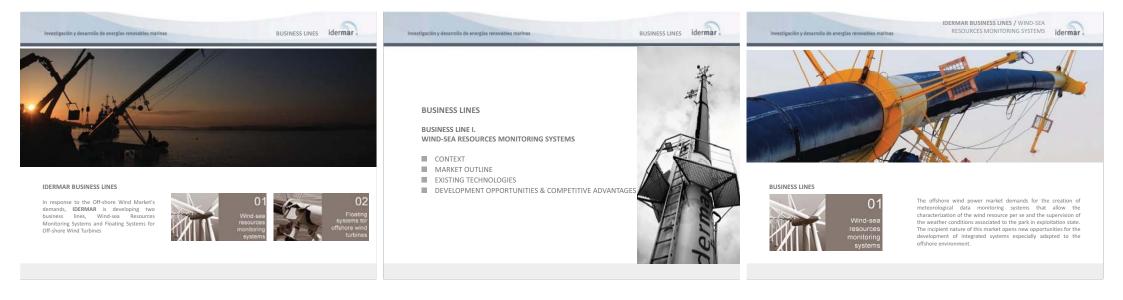
To turn the achivements obtained in the study of the water cycle and related systems into concrete social benefits and to transfer them to society by means of the establishment of solid ways of knowledge tranfer, methodologies and tools to the public administrations and national and international companies

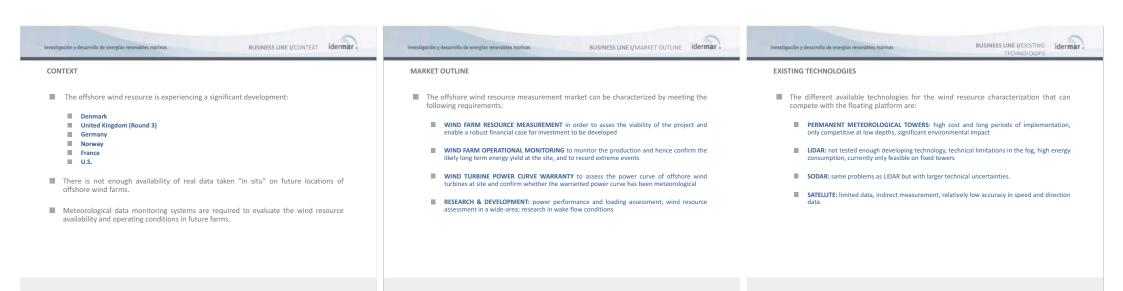
To develop models, patents and know-how to increase international competitiveness of our companies and of the demanding levels of our administrations.

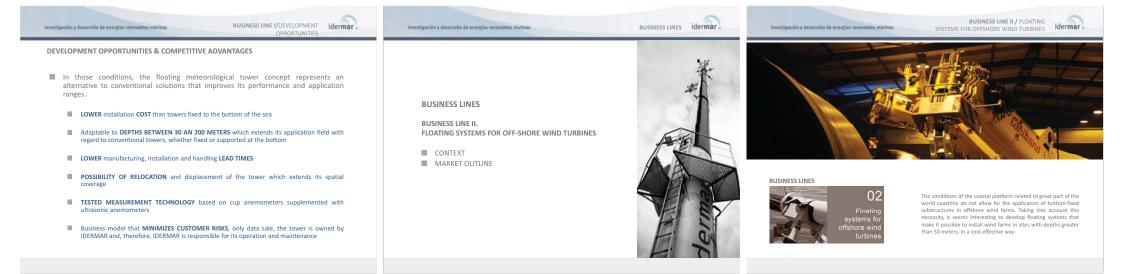
Among its strategic lines are the investigation and the technological development in the field of renewable sea energies.

PARTNERS

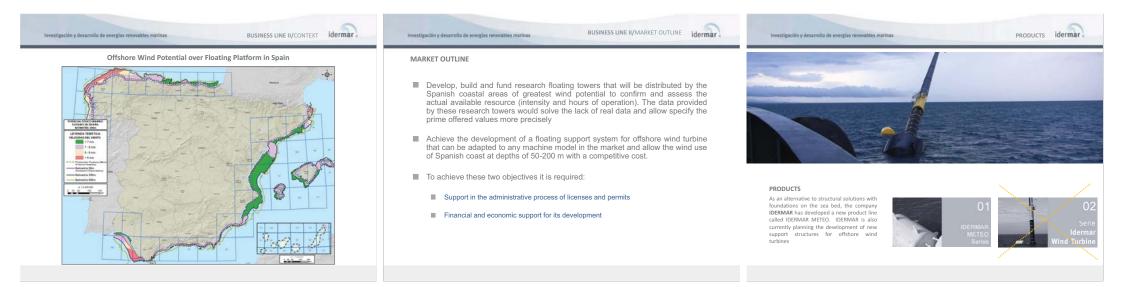
ACTIUM S.A. is the means of investment of the APIAXX Group. ACTIUM invests in infrastructure, building, energy industry and agriculture projects through societies created for the development of their work in these areas. As part of the APIA XXI Group, ACTIUM has a payroll of more than 500 protesionals who offers global solutions at national and international levels, by means of investing in the development of projects around Spain, Latin America, Central America and East Europe. IDERMAR project sets ACTIUM activity in two strategic fields for the company: energy and R&D.




MUIJEH @


<u>N</u>

Helium is a company specialized in technologies for energy sustainability, mainly in the wind power field. Its multidisciplinar scope of work allows for the appreciation of different innovative energy technologies as well as for the reduction of the time they take to reach the market by means and services.


Helium offers technical assistance to financial institutions, organizations, companies and governements, in the national and international field. Its comprehensive service offer covers the whole life cycle of the project, from Turn-key projects to specific interventions during any state of the project: R&D, design, promotion, project management/monitoring, design and support in the search for financial support, handling of proceedings, etc.

Investigación y desarrollo de energías renovables marinas BUSINESS LINE II/CONTEXT idermar	Investigación y desarrollo de energias renovables marinas BUSINESS LINE II/CONTEXT idermar	Investigación y desanvilo de energias renovables marinas BUSINESS LINE II/CONTEXT idermar
CONTEXT Reasons to promote Offshore Wind Energy:	Range of Offshore Wind Technologies Use	Comparisson between the Spanish and British coast areas (depth below 50 m) where bottom foundated offshore solutions can be used
 Avoiding increasing land parks with significant scenic and environmental impacts Not having to use land areas with less potential, reflecting lower efficiency of energy production Development of new technology and new business areas for Spanish companies that would maintain their competitiveness against other countries Maintaining and creating jobs in a sector that currently employs more than 37,000 people in Spain (Wind at Work report, January 2009) 	APPROX. DISTANCE 20 Km.	
 Offshore Wind Potential: The Spanish coast platform is low with a landscape buffer zone of 8 km (7 miles in the United Kingdom) The available area for conventional facilities cemented in depth between the line of 8 km and the bathymetric of 50 m is very low 	ROTTON FOUNDATED SOLUTIONS	Soro B
Adequate distances to minimize visibility from land are located around 15-20 km, where the depth is typically 200 m	RANGE OF OFFSHORE TECHNOLOGIES USE	POTRICAL EXCEPT MARKED COMPARIANCE Network (MARK) COMPARI

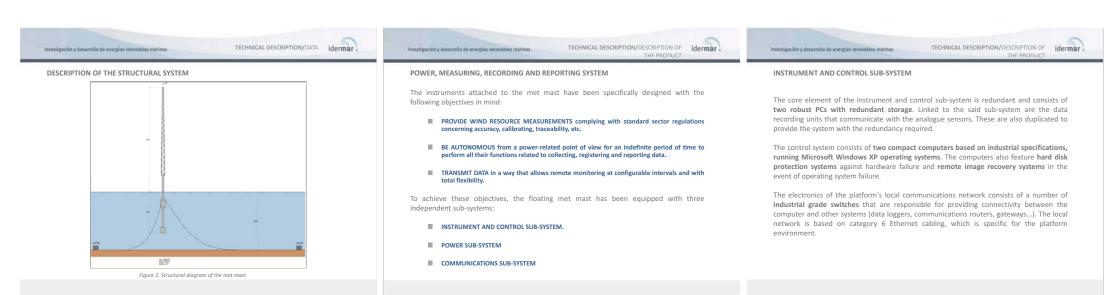
Alternatively to the bottom-fixed foundation solutions, IDERMAR has developed a new array of products called IDERMAR METEO destined to the creation of wind and ocean resource assessment campaigns in middle-depth and deep water sites. It consists of a data acquisition and analysis system based on a web application that allows for remote access to meteorological and ocean data. The monitoring system is installed in a floating substructure which supports a metmast similar to those used in onshore campaigns.

PRODUCTS

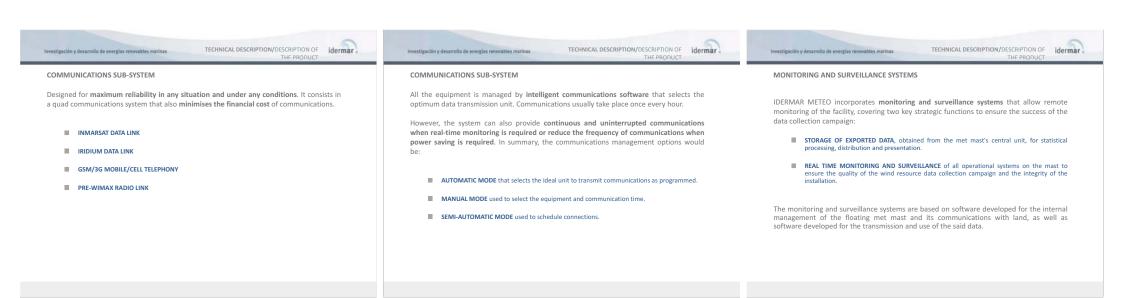
The structure can be carried and installed easily thus reducing the cost and the impact on the environment, compared to structures attached to the seabed. Since they can be easily transported, the floating masts can be re-used for different measurement campaigns or taken to the port for repair in case of major structural damages. Currently, the IDERMAR METEO line consists of two products with a mast height of 60 and 80meters each.

INTRODUCTION

- DESCRIPTION OF THE PRODUCT
 - Structural support and floating system
 - · Power, measuring, recording and reporting system
 - Monitoring and surveillance systems
- DATA
- CERTIFICATION & ASSESSMENT BY THIRD PARTIES



IDERMAR METEO is a floating substructure which supports a met mast similar to those used on land, which characterises off-shore wind resources through the comprehensive measurement of the different physical variables involved (wind speed, wind direction, temperature, atmospheric pressure, relative humidity...).The system comes complete with devices that provide remote monitoring capabilities in relation to the data obtained and to the safety of the entire unit. The energy required to keep the equipment working is generated in the floating structure itself, making the whole system autonomous concerning power.


TECHNICAL DESCRIPTION/INTRODUCTION idermar

Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DESCRIPTION OF THF PRODUCT	Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DESCRIPTION OF THE PRODUCT	Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DATA idermar
DESCRIPTION OF THE PRODUCT	STRUCTURAL SUPPORT AND FLOATING SYSTEM	DESCRIPTION OF THE STRUCTURAL SYSTEM
 THE FLOATING MAST PROPOSED BY IDERMAR CONSISTS OF THREE BASIC SYSTEMS: STRUCTURAL SUPPORT AND FLOATING SYSTEM POWER, MEASURING, RECORDING AND REPORTING SYSTEM MONITORING AND SURVEILLANCE SYSTEMS 	 From a structural point of view, the system consists of a submerged section that provides stabilisation through a buoyancy and ballast mechanism, and a section above water consisting of a cylindrical first section followed by a lattice mast where the elements that support the instruments are mounted. The whole unit measures 125 m long, of which, 35 m are underwater and 90 m are above sea level. It has been designed for anchoring in depths of 50 metres or more. DESCRIPTION OF THE STRUCTURAL SYSTEM Anchor system Underwater section Water-air interface 	Totomotic stational Anote stational An
	Section above water CHARACTERIZATION OF THE INSTRUMENT SUPPORTING ARMS	Figure 1. Parts of the floating met mast structure

Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DESCRIPTION OF THF PRODUCT	Investigación y desarrolla de energias renovables marinas TECHNICAL DESCRIPTION/DESCRIPTION OF THF PRODUCT	Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DESCRIPTION OF THE PRODUCT
INSTRUMENT AND CONTROL SUB-SYSTEM	INSTRUMENT AND CONTROL SUB-SYSTEM	POWER SUB-SYSTEM
This system receives, monitors and manages the signals of the different sensors installed, including the following: METEOROLOGICAL AND ENVIRONMENTAL SENSORS (all the sensors are installed in strict compliance with MEASNET guidelines): • Thies "First Class" Advanced cup anemometers, pre-calibrate in wind tunnels belonging to MEASNET • Thies "Compact" wind vanes • Gill WindMaster Pro ultrasonic anemometers, pre-calibrated in accordance with ISO 16622:2002(E). This includes real time post-processing to compensate for the movement of the structure • VAISALA HMP45Cde temperature and humidity meters and atmospheric pressure meters (SETRA CS100)	 POSITIONING AND COMPENSATION: TOPCOM differential GPS with centimetre precision, 1 Hz sampling frequency and real time compensation (requires base station on land). KISTLER high sensibility accelerometers with frequency ranges from 0 Hz to compensate anenometer measurements. XSENS inertial systems: consisting of accelerometers, gyroscopes and magnetic compass, also for compensation and anemometer measurements. INTERNAL DIAGNOSTICS (several units for redundant measurements): Water level meters (VEGA) Temperature and relative humidity sensors (CAREL) 	The power sub-system has been designed to provide the necessary autonomy at any time of the year and in any location (excluding the Arctic and Antarctic circles). It incorporates the latest power generating technology to provide a robust and reliable system and consequently eliminating health and safety risks. PHOTOVOLTAIC PANELS TWO WIND TURBINES SET OF GEL BATTERIES BATTERY CHARGING REGULATORS AND INVERTERS AUXILIARY POWER SYSTEM BASED ON METHANOL FUEL BATTERIES

LOATING MET MAST AND COMMUNICATIONS SOFTWARE	DATA PRESENTATION AND DOWNLOADING SOFTWARE	DATA PRESENTATION AND DOWNLOADING SOFTWARE
his is the software installed in the floating met mast control computer and its use is estricted to IDERMAR to operate system. It comprises the following components:	The software used for presenting and downloading data, which is partly accessible to customers, includes a number of Web-based services that allow the use of the data stored in the project database.	And And And And And And And And And
COMMUNICATIONS MANAGEMENT SYSTEM	The system also includes a range of services that trigger alarms that automatically send e-	
SAFE DATA TRANSMISSION SYSTEM	mails alerts and SMS messages to pre-established recipients for each alert category.	
ALARM MANAGEMENT AND ACCUMULATION SYSTEM	The WEB services are based on a complete multi-user and multi-project platform. The system allows each user with access privileges to the consultation system to customize the	
LAND BASED DATE RECEPTION AND STORAGE SYSTEMS	WEB page based on their needs. This requires a set of controls that take the data stored in the database and presents them to the user in the form of graphs, simulations, lists or	
 An FTP server 	other items.	
• A service in charge of uploading the data files received to the database	The said set of controls is a permanently growing repository based on the needs and	
o SQL Server 2008 database server	expectations of the different types of system users. Consequently, the view that an operations and maintenance manager has when accessing the system would be a list of alerts and alarms, while the view a met data analyst would get would include reports,	
	graphs, animations, etc. In any case, each user may customize the page according to their needs based on a set of controls they will be able to access based on their individual	

Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DATA idermar

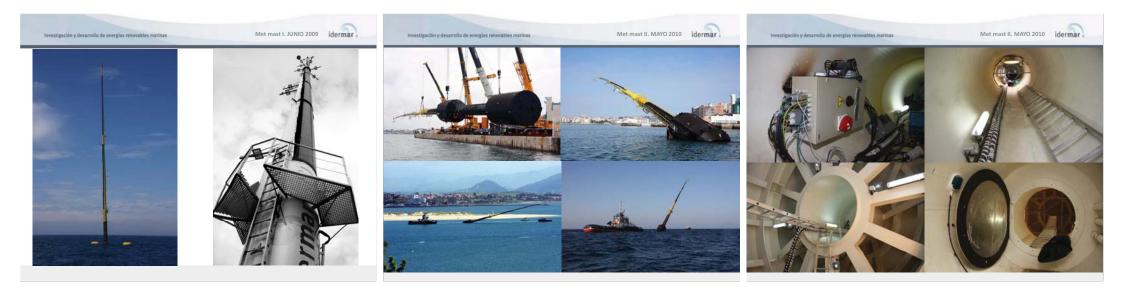
IDERMAR will deliver corrected data on a monthly basis. The said data will take into account the effects of any possible movement of the floating met mast and will include the completion of data by means of **MCP methods**. The delivery of data will be via the WEBSITE. Customers will be notified by e-mail on a monthly basis when the database has been updated.

The data on each meteorological parameter, of the type mentioned above, taken with a frequency that exceeds 1Hz, will be stored continuously and processed each month to obtain the different variable that will be delivered to customers in electronic format.

ATA			
SENSOR	HEIGHT (m above AWH)	ASSEMBLY	DIRECTION
Cup anemometer	90	Vertical support	-
Cup anemometer	85	Horizontal arm	WNW
Ultrasonic anemometer	85	Horizontal arm	ESE
Wind	82	Horizontal arm	WNW
Wind	82	Horizontal arm	ESE
Temperature sensor	80	On mast	WNW
Temperature sensor	80	On mast	ESE
Air pressure sensor	80	On mast	WNW
Air pressure sensor	80	On mast	ESE
Relative humidity sensor	80	On mast	WNW
Relative humidity sensor	80	On mast	ESE
Ultrasonic anemometer	75	Horizontal arm	WNW
Cup anemometer	75	Horizontal arm	ESE
Wind	65	Horizontal arm	WNW
Wind	65	Horizontal arm	ESE
Cup anemometer	55	Horizontal arm	WNW
Ultrasonic anemometer	55	Horizontal arm	ESE
Ultrasonic anemometer	45	Horizontal arm	WNW
Cup anemometer	45	Horizontal arm	ESE
Temperature sensor	20	On mast	WNW
Temperature sensor	20	On mast	ESE

Investigación y desarrollo de energias renovables marinas TECHNICAL DESCRIPTION/DATA idermar


The processing of the said variables will be based on ten-minute series of data with sampling frequencies above 1Hz. From each ten-minute data series, the following will be obtained:


FOR WIND SPEED AND DIRECTION: maximum value average and minimum value as well as the standard deviation.

FOR OTHER VARIABLES: the average value and the typical deviation.

Each of the variables will be stored in **ASCII format** in separate files. Within each of the files, the first 6 lines correspond to the header containing general information on the mast, variables and the measurement period in question. From the seventh line, the information will be stored in columns, where the first will be the corresponding timestamp of the tenminute series.

DATA						REAL TIME ACCESS TO DATA	CERTIFICATION AND ASSESSMENT
fstation: <u>Virgen</u> del Mar #Parameter: WindVane_60m #Unit: degree #Tilles: Time	Value	Minimum	Maximum	Std. Deviation	Quality	Additionally, the data presentation software provides the possibility of viewing and downloading raw data virtually in real time . Raw data do not contain corrections due to the movement of the buoy, not have they been completed using MCP methods . Access to this information is regulated by a number of profiles that provide safe and identified	In order to offer our customers maximum guarantees, the IDERMAR METEO system subject to the most rigorous certification and testing processes in the wind farm sector. With this in mind, IDERMAR has decided to work with the company, GL Garrad Hassan, o of the unquestionable reference companies that has wide-ranging experience in t
Data:						access by each user.	maritime and wind farm sectors as well as in testing and resource data collecting.
01/01/2010 0:00 01/01/2010 0:10	50.3 52.3	-999.99 -999.99	-999.99 -999.99	3.24 4.67	2	Consequently, customers will have access to the information that corresponds to all the	The certification and assessment process is divided into two different parts:
01/01/2010 0:20	52.5	-999.99	-999.99	3.7	2	meteorological and environmental data described in Table 2.	
01/01/2010 0:30	53.1	-999.99	-999.99	3.15	2	IDERMAR staff responsible for operational and maintenance tasks will have access to	DATA QUALITY ASSESSMENT
01/01/2010 0:40	53.3	-999.99	-999.99	3.54	2	information from all the sensors (meteorological and environmental, positioning and	
01/01/2010 0:50	55.9	-999.99	-999.99	4.54	2	compensation or internal diagnosis sensors). This information will be used by IDERMAR to establish and schedule maintenance tasks. Likewise, the said tasks will be used to correct	STRUCTURE CERTIFICATION
01/01/2010 1:00	51.9	-999.99	-999.99	3.86	2	and complete wind data.	
01/01/2010 1:10	51.8	-999.99	-999.99	3.97	2		
01/01/2010 1:20	55.4	-999.99	-999.99	4.43	2		
01/01/2010 1:30	54.7	-999.99	-999.99	3.49	2		

Name:	Title of poster
Van Buren, Eric, NTNU	Effects of foundation modeling methodology on the dynamic response of offshore wind turbine support structures
Frøyd, Lars, NTNU	Design and analysis of a 10 MW wind turbine
Merz, Karl, NTNU	Blade Design for Offshore Wind Turbines
Karimirad, Madjid, NTNU	Response Instabilities due to Servo-Induced Negative Damping for a Tension Leg Spar Wind Turbine
Zwick, Daniel, NTNU	Loads of Dynamics in Lattice Tower Support Structures for Offshore Wind Turbines
Gjerde, Sverre, NTNU	Integrated converter design with generator for weight reduction of offshore wind turbines
Netland, Øyvind, NTNU	Remote presence, Operation and Maintenance of Offshore Wind Farms without Leaving your Office
Liu, Bing, NTNU	Wind Turbine Power Performance Verification by Anemometer on the Nacelle
	Grid Integration of large Offshore Wind Energy and Oil & Gas Installations using VSC-HVDC
Nguyen, Trinh Hoang, University of Agder	Model-based operations and maintenance for offshore wind
Eliassen, Lene, University of Stavanger	Vortex Methods for Horizontal Axis Wind Turbines
Flügge, Martin, Reuder, Joachim University of Bergen	Atmospheric turbulence measurements close to the ocean surface
Kalvig, Siri, University of Stavanger	Improved energy forecast for offshore wind farms
Garcés Ruiz, Alejandro, NTNU	Series Connection of Offshore Wind Turbines
Aarnes, Ole Johan, University of Bergen:	Wave extremes in the Northeast Atlantic
Ramachandran, G.K.V., DTU:	Response of Tension Leg Configuration subjected to wave & aerodynamic thrust loading
Hameed, Zafar, NTNU:	Challenges in the Reliability and Maintainability Data Collection for Offshore Wind Turbine
Haileselassie, Temesgen, NTNU:	Control and Operation of Multiterminal HVDC for Market Integrated Offshore Wind Farms
Tasar, Gursu, NTNU:	Analysis of Atmospheric Boundary Layer of Frøya Test Site

Poster presentations of PhD students on offshore wind

EFFECT OF FOUNDATION MODELLING METHODOLOGY ON THE DYNAMIC RESPONSE OF OFFSHORE WIND TURBINE SUPPORT STRUCTURES

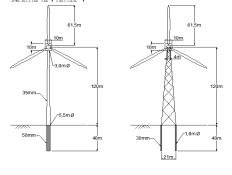
PhD candidate: Eric Van Buren Supervisor: Geir Moe

BACKGROUND

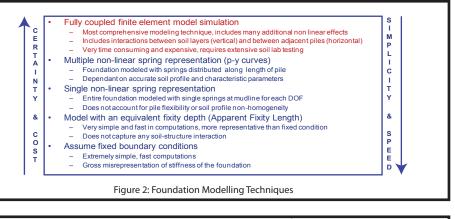
Offshore wind farms are currently much more costly than their land based counterparts, about 50 per cent more costly according to the EWEA. This cost discrepancy is due in large part to the increased size, complexity, and installation difficulties associated with the support structures at sea; typically costing 2.5 times more than the support structure for a comparable land based turbine. One of the most difficult and most costly aspects in the design and construction of offshore structures is the foundation – specifically the portion of the structure which interacts directly with the seabed.

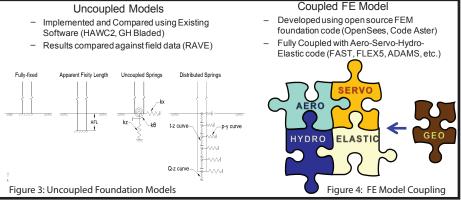
In addition, because offshore wind turbines are highly dynamic systems, it is important to have a relatively accurate prediction of the dynamic properties of the full wind turbine structure, including the foundation and the interaction between it and the soil. In order to achieve this, the structural model of the system must include provisions for the characteristics of the foundation in some form or fashion.

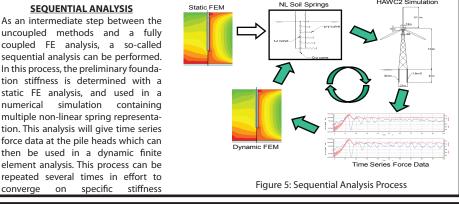
OBJECTIVES


The goal of the current project is to develop improved methods for modeling offshore wind turbine foundations with an aim to decrease the level of uncertainty in foundation design. By improving the level of confidence in pile design, many of the piles may be optimized for the given soil and load conditions, reducing the size and thus leading to shorter installation times and lower costs.

It is believed that current foundation modeling techniques underestimate the amount of damping provided by the foundation. While this was of little importance to the mostly static oil platforms in the past, increased damping in a highly dynamic system such as a wind turbine could greatly influence the overall design of the system, particularly the support structure.


EXPERIMENTAL SETUP


In the current project, piled foundations for both a full-height lattice tower, as well as a monotower, are investigated. These structures can be seen below in Figure 1.


Additionally, several different modeling techniques are used, greatly ranging in complexity and detail, as

Norwegian University of Science and Technology Department of Civil and Transport Engineering

CURRENT WORK

Work is currently being done on the sequential analysis in effort to determine proper stiffness and damping parameters for a piled foundation on both a monotwoer and lattice tower structure in layered soil. The NREL 5MW offshore reference turbine is being used to allow for easier comparisons with other works.

Several different soil profiles are being utilized, including profiles from the North-Sea, Gulf of Mexico and the U.S. Atlantic coast. These are all potential future sites for offshore wind turbines. **FUTURE WORK**

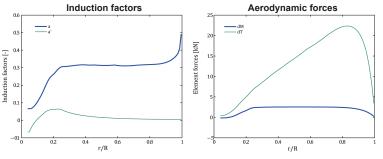
Following the sequential analysis process, efforts will be made to develop a fully coupled analysis software which contains aero-servo-hydro-elastic and geotechnical processes. This will allow for a much closer look at the dynamic process taking place in the soil and at the soil-pile interface during power production.

This tool will allow a much closer look at the damping provided to the system by the soil-structure interaction, possibly saving material and installation costs.

Wind Power R&D Seminar - Deep Sea Offshore Wind Power 20-21 January 2011, Trondheim

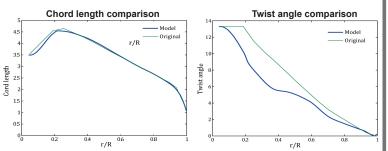

Design and analysis of a 10 MW wind turbine

- A brief summary of the status and recent progress


1. Aerodynamic design method

A method for aerodynamic design has been developed based on blade element momentum (BEM) theory such that a realistic wind turbine blade can be designed with a minimum of parameters [1]:

- Thickness to chord ratio along the blade
- A list of airfoils for the range of thicknesses + C_L and C_D data
- The design point x_{des} where the aerodynamics are optimized The design point x₁ which is the point of maximum chord length



Based on these data a normalized blade geometry is created and scaled to the relevant rated power and rated wind speed. The tip chord length and the twist angle distribution are optimized to yield an ideal distribution of aerodynamic induction and aerodynamic forces:

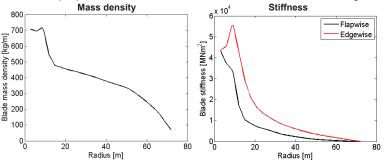
2. Validation of the design method

The design is compared to the NREL 5MW Offshore Baseline design with the same airfoil distribution. The result shows that the method is suitable for design of large wind turbine blades.

3. Aerodynamic design of 10 MW rotor

Using the developed method with a design power of 10 MW, rated wind speed 13 m/s and design tip speed ratio of 7.3, a baseline design is created with a rotor diameter of 144.5 m and $C_{P} = 0.49$.

The blade is designed especially for large rotors, with a high aspect ratio to reduce aerodynamic loads at standstill and a long, smoothly changing root section to improve buckling stability.

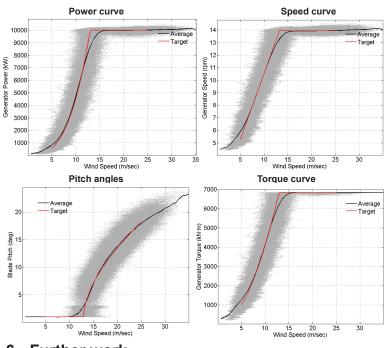

The design choices made above will later be subject to a parameter study to investigate how the baseline design can be improved.

Statkraft Ocean Energy **Research Program**

sectional properties of the blade have been chosen as a first design. Mass density 10

4. Structural design of the blades

Based on structural design definitions for the blade spar from [2] and


[3], and structural definitions of a blade shell from [4], the cross-

Lars Frøyd, PhD candidate, NTNU

This gives a blade mass of 27 tons, which is comparable to the LM 61.5 blade of 18 tons.

5. Aeroelastic analysis of 10 MW rotor

Based on the method for pitch gain scheduling in [3] a method was created to automatically design a control system for any given turbine design in Simulink. Using the aeroelastic code FAST with Simulink, the 10 MW wind turbine was simulated. The results show that the variable speed, variable pitch control strategy very efficiently limits the loads above rated speed and yields especially good torque response.

6. **Further work**

- Improved structural design and thorough analyses (buckling/flutter)
- More complete definitions of the baseline 10 MW turbine properties •
- Simulation of the 10 MW wind turbine on a floating platform.
- Parametric study of rotor parameters and platform parameters to investigate the design basis for floating wind turbines with respect to fatigue damage.

References

[4]

NTNU

Norwegian University of Science and Technology

[1] Frøyd, L. & Haugset, S.K., 2010. Analysis and Design of Wind Turbine Blades for Horizontal Axis Wind Turbines Using Blade Element Momentum Theory, NTNU.

- [2] Höyland, J., 2009. Challenges for large wind turbine blades. Doctoral thesis. NTNU
- [3] Hansen, M.O.L., 2008. Aerodynamics of Wind Turbines, Second Edition, Earthscan Publications

TPI Composites, 2002. Parametric Study For Large Wind Turbine Blades: WindPACT Blade System Design Studies., Sandia National Laboratories

DTU Mechanical Engineering

Department of Mechanical Engineering

Conceptual Design of Stall-Regulated Rotors for Offshore Wind Turbines

Karl Merz, Department of Civil and Transport Engineering, NTNU; karl.merz@ntnu.no

1. Introduction

Deepwater offshore wind turbines are more expensive than their land-based counterparts, for three unavoidable reasons: the support structure is more elaborate; marine operations (including installation and maintenance) are costly and require a favorable weather window; and the electricity must be transmitted over long distances. Minimizing the overall system cost may require configurations that are different from what has become the standard onshore turbine: three-bladed, upwind, pitch-regulated.

It is proposed that passive stall regulation should be revived as a possibility for large offshore wind turbines. The reason is the simplicity of the mechanical systems: the simplest stallregulated, direct-drive (no gearbox) turbine has only one primary moving part: the aerodynamic rotor / driveshaft / generator rotor. A brake system and yaw drive are also needed, but they are actuated infrequently. Perhaps this simplicity could be leveraged to reduce -- or, optimistically, eliminate -maintenance requirements and downtime.

The operating characteristics of the rotor influence the design of the support structure to a greater extent than the support structure influences the blade design. Thus it seems that the appropriate place to begin conceptual design is the rotor: what does a stall-regulated rotor look like, which is adapted for operation offshore?

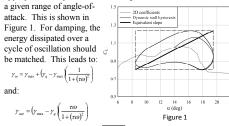
A literature review provided examples of optimization methods that can be employed in blade design: References [1] through [4], for instance. However, there are few examples describing what an optimum stall-regulated blade looks like: how does it behave? Why is it optimal? The work of Fuglsang and colleagues ([5], and related publications) is an exception, although even here the discussion of design principles is brief.

The design of a stall-regulated blade involves a balance between the competing goals of maximizing energy capture, while minimizing loads (including blade weight) on the support structure. The conceptual design process requires fast and simple methods for generating, evaluating, and understanding this tradeoff for various blade designs. Frequency-domain analysis is ideal for this purpose, because it is orders of magnitude faster than time-domain analysis, and it can be understood in terms of superposition.

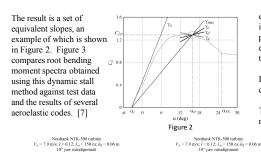
2. Frequency-Domain Analysis

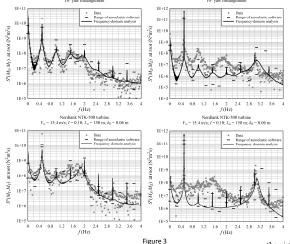
Frequency-domain analysis methods were developed to predict the dynamic behavior of a stall-regulated blade. Two additions were made to textbook methods [6]: the component of turbulence in the plane of the rotor was included, along with the axial component; and dynamic stall was modelled.

Frequency-domain methods are by nature linear, whereas stalled-flow aerodynamics is nonlinear. Therefore, the aerodynamic equations must be linearized. This involves finding the change in lift coefficient for a given change in angleof-attack, $\gamma = dC_1/d\alpha$. This lift coefficient slope should be chosen such that it accounts for flow separation. The slope may be a function of frequency, since the total response of the blade is calculated as the sum of the responses at individual frequencies


Flow separation can be modelled as a first-order time-lag, of the form:

$$\frac{d\alpha_f}{dt} = \frac{\alpha - \alpha_f}{\tau}$$


This time-lag is related to movement of the chordwise position of the separation-point along the low-pressure surface of the airfoil. It is further assumed that a linearized lift coefficient can be calculated as:


$$C_L = \gamma_{\max} (\alpha - \alpha_f) + \gamma_q (\alpha_f - \alpha_0)$$

It is proposed that, for calculating blade excitation, it is appropriate to capture the entire range of the lift coefficient, for

such that for excitation, $\gamma_e = \sqrt{\gamma_{in}^2 + \gamma_{out}^2}$, while for damping, $\gamma_d = \gamma_{in}$.

3. Airfoil Model

An airfoil model was developed, based on a survey of published coefficient data, which allows numerically smooth interpolation between a range of airfoil behaviors. Particular attention was paid to the way in which drag increases as the lift coefficient peaks and drops;

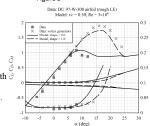


Figure 4

this drag behavior has an. important influence on the behavior of a stall-regulated turbine. Figure 4 shows an example of the model, in comparison with data.

4. Strength Checks

Material stiffness and strength properties, including Goodman diagrams for fatigue, were obtained from Griffin [8]. Fiberglass and carbon-fiber were candidates for the spar material. The outer shell is a fiberglass sandwich construction.

Strength checks were performed in order to size the spar caps. The thickness of the webs was assumed to be proportional to the spar cap thickness.

Local stress spectra were calculated at 12 sections along the length of the blade, at 6 points around each cross-section. From these stress spectra, fatigue cycle counts were obtained by the Dirlik method. In addition, a spectral method (described by Burton et al. [6]) was used to estimate the peak stress.

The fatigue analysis was performed at windspeeds of 5, 7, ..., 23, and 25 m/s. The peak stress analysis was performed using a stochastic dynamic response based upon windspeeds of 25 m/s (operating) and 50 m/s (shut down), with mean stresses calculated using 40 m/s and 70 m/s, respectively, in order to account for the effect of a gust.

Load factors were calculated for tension and compression fracture, buckling, fatigue, maximum tip deflection (limited to 0.1R), and flutter

5. Optimization

A constrained, gradient-based optimization algorithm, similar to that of Fuglsang and Madsen [9], was used to obtain the optimum blade designs. The method uses sequential linear programming inside the feasible domain, and the method of feasible directions to move away from a constraint boundary.

Constraints are implemented such that the load factors do not

January 20, 2011

exceed 1.0 (indicating failure). Constraints are also implemented to ensure a minimum damping of 0.004 (though preferably much higher) at windspeeds up to 40 m/s; this ensures that blade vibration is stable during gusts, when the turbine is operating in the vicinity of the cut-out windspeed.

Design variables were material thickness, airfoil properties, chord, twist, and t/c ratio at 12 points along the blade.

The cost function is cost-of-energy, not including operation and maintenance, representative of a floating wind turbine. The cost is calculated as the sum of independent component costs, which are assumed to vary with governing loads from the rotor.

6. Results

A unique (to the author's knowledge) type of blade results from the optimization. Figure 5 shows the chord and twist profiles, compared with the NREL 5 MW reference turbine (which is pitch-regulated). First, note that the optimum rated power in the North Sea wind climate (about 9 m/s average windspeed at hub height) is much higher, for a given swept area, than a standard rotor. This follows from the fact that half the total annual energy in the wind is contained at windspeeds over 17 m/s, and it is beneficial to capture some of this "extra" energy

The discontinuous twist profile near the tip is not an artifact of the optimization; it provides very favorable dynamic properties beyond the rated windspeed. when the blades are in various degrees of stall. Figure 6 shows the mean angle-of-attack, as a ratio to the angle-of-attack at maximum lift; a value of 1 thus represents the point at which stall begins to dominate

the airfoil forces. The "back-twist" near the tip, combined with the relatively high-lift airfoil at this location, means that flow stays attached, over a few meters of the blade length, through the cut-out windspeed. Attached flow provides a large amount of damping; thus this blade design has aerodynamic damping that is higher than a typical stall-regulated blade. This region of the blade also produces a large amount of power, which is counteracted by drag over other parts of the blade, such that the total power remains within limits. The stall behavior of the blade is better than normal; the rotational speed needs to vary only a small amount in order to hold power constant at high windspeeds.

The family of blades shown in Figure 5 is recommended for further study, and comparison against pitch-regulated blades. One concern is that the blade element method, used to predict the aerodynamic loads, is not theoretically valid when flow is stalled. It is questionable whether the aerodynamic properties of the attached-flow section of the blade would stay the same when the adjacent sections of the blade stalled. This behavior could be investigated with wind-tunnel measurements or CFD analysis

Another interesting feature of the blades is that the inner 4/5 of the blade length has $t/c \ge 0.30$ (typically right at 0.30). Modern airfoils perform well aerodynamically up to this t/c.

NREL 5 MW

55

60

ngs of the 10th BWEA Wind

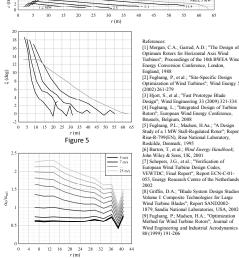


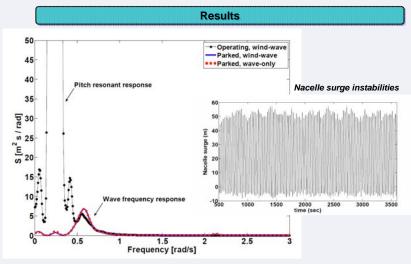
Figure 6

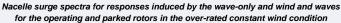
Response Instabilities due to Servo-induced Negative Damping for Floating Wind Turbines Madjid Karimirad, CeSOS and NOWITECH NTNU NOWITECH Torgeir Moan, CeSOS and NOWITECH Norwegian University of Science and Technology

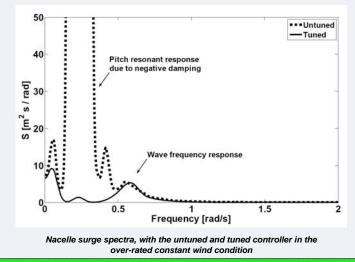
Abstract

The blade pitch control of an operating turbine can introduce negative damping in a floating wind turbine. For example, if the relative wind speed experienced by the blades increases due to the rigid body motion of the system, then, if a conventional controller is used, the blades will feather to maintain the rated electrical power. Thus, the thrust force will decrease, which will introduce negative damping for over-rated wind speed load cases. However, in fixed wind turbines since the frequency of the blade pitch controller is normally less than the frequencies associated with the relative rotor motions induced by the structural responses. In this paper, a tension leg spar (TLS) wind turbine is introduced as a support structure for a wind turbine in deep water with a downwind rotor configuration. A dynamic response analysis of the TLS is performed for simultaneous wave and wind loading. These analyses are based on an integrated time domain aero-hydro-servo-elastic simulations. The wave-induced and wind-wave-induced responses of both parked and operating wind turbines are compared to investigate the control-induced negative damping effect. The correlation of wave and mean wind velocity is considered to define the environmental conditions for below-rated, rated and over-rated wind speeds. The HAWC2 code (version 8.5) with a collective blade pitch controller is used to perform the analysis. It is found that the wave frequency responses of the wave-wind-induced cases are not affected by aerodynamics or the controller actions. In the over-rated wind speed case, the negative damping caused by the controller excites the pitch resonant motion. This extraordinary pitch resonant response governs the power production and other responses, such as the nacelle surge, bending moment and tension responses. It is necessary to avoid the servo-induced negative damping to get an adequate fatigue life. In this paper, the controller gains are modified to reduce the instabilities caused by the servo negative damping. When the tuned controller was applied, the pitch resonant motion was reduced and the power production was improved compared with when the untuned controller was used. The ratio between the standard deviation of the electrical power generated when the untuned and tuned controller is applied for an over-rated wind speed case is 8.1. The similarly defined ratio for the nacelle surge motion, the bending moment at the tower-spar interface and the bending moment at the blade root is 14.5, 4.4 and 2.7, respectively. These results show that negative damping adversely affects the performance and structural integrity of a floating wind turbine. Furthermore, the fatigue limit state is highly influenced by the negative damping.

Tension Leg Spar Floating Wind Turbine


Floating wind turbine properties


Wind turbine	5-MW downwind
No. of blades	3
Blade length	61.5 m
Hub height	90 m
Controller	Collective blade pitch
Rated wind speed	11.2 m/sec
Draft	120 m
Diameter above taper	6.5 m
Diameter below taper	9.4 <i>m</i>
Centre of buoyancy	-62 m
Displacement	8126 m ³
Total mass	7682E+03 kg
Centre of gravity (CG)	-80 m
Pitch/Roll inertia about CG	2.18E+10 kg.m ²
Yaw inertia about centreline	1.215E+08 kg.m ²
Leg length	Up to 200 m
Leg diameter	1.0 m
Leg thickness	0.036 m
Pretension	7.624 MN


latural frequencies		
Surge/Sway	0.05	
Heave	3.69	
Pitch/Roll	0.20	

Changes applied to the NREL wind turbine

Parameter	Upwind	Downwind
Rotor position	In front of tower	Behind the tower
Shaft upward tilt	5.0 (deg)	0.0 (deg)
Hub upwind cone	2.5 (deg)	0.0 (deg)

Conclusions

The blade pitch control of an operating turbine can introduce response instabilities in a floating wind turbine. By tuning the controller gains, negative damping can be eliminated. In this study, the controller is tuned to have a natural frequency less than the TLS pitch natural frequency. The comparison of the tuned and untuned controller showed that using a constant torque algorithm and tuning them controller gains helps to decrease the resonant responses and improves the power production for the over-rated wind speed cases. At the rated wind speed, the response is governed by the surge resonance, and the tuning effect is less effective. However, for the over-rated wind speed region, because the response is governed by the pitch resonance, tuning is effective at eliminating the negative damping. Comparing the statistical characteristics of the responses for the tuned and untuned controller for the wind turbine subjected to the wave and wind loads at the over-rated wind speed case showed that the standard deviation (dynamic part) of the nacelle surge motion, tension, bending moment and electrical generated power decreased due to the removed negative damping. The ratio between the standard deviation of the power for the untuned and tuned controller for the over-rated wind speed case is 8.1. For the nacelle surge motion, the ratio of the standard deviation applying the untuned and tuned controllers reaches 14.5. The ratios between the standard deviation of the bending moment at the tower-spar interface and at the blade root are 4.4 and 2.7, respectively, which means that the negative damping adversely affects the performance and structural integrity of the floating wind turbine. Reducing the standard deviation of the responses will increase the fatigue life of the system. The effect of the turbulence and fatigue life will be discussed in the future research

Reference

Karimirad M. and Moan T., "Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine", Accepted for publication and oral presentation at the European Wind Energy Conference (EWEC2011), March 2011, Belgium

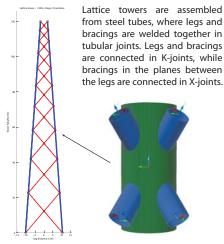
LOADS AND DYNAMICS IN LATTICE **TOWER SUPPORT STRUCTURES** FOR OFFSHORE WIND TURBINES

PhD candidate: Daniel Zwick Supervisor: Geir Moe

BACKGROUND

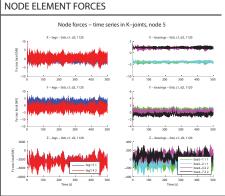
The extremely ambitious political goals concerning extensive use of offshore wind energy result in an intense demand of research and development in this field. As an example, round 3 in UK could mean a need to install several thousands of offshore wind turbines within the next ten years. To be able to fulfil this goal, components for offshore wind farms has to be produced by mass production techniques and within reasonably short fabrication time.

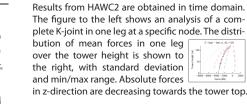
New node concepts might be of interest for more automated production of lattice towers. As a basis for such an investigation, loading and dynamic response by focusing on design of the nodes has been analysed with HAWC2 in this study.


SUPPORT STRUCTURE CONCEPTS

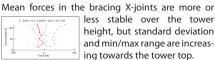
Where offshore wind turbines are planned to be installed in the intermediate water depths of 30-70m. bottom-fixed support structures might be used. One promising concept is the lattice tower type, due to less material use compared to other concepts like monopile or tripod structures. A lattice topology could be used for the entire support structure between sea bottom and turbine nacelle or for the lower part of the tower only.

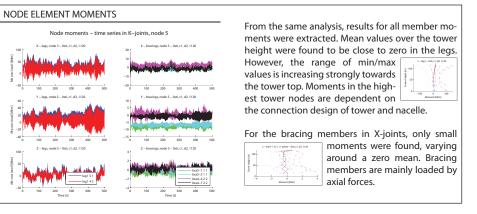
Bottom-fixed support structure concepts for the intermediate water depth of 30-40m

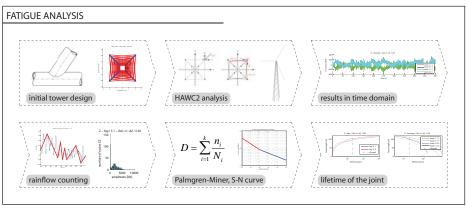

LATTICE TOWERS



Joint geometry of nodes in lattice towers


NODE ANALYSIS WITH HAWC2


A lattice tower support structure with 84 beam elements was modelled and analysed with HAWC2. Wind turbine and rotor configuration were taken from the NREL 5MW baseline turbine.



MEMBER DIMENSIONS

The initial tower design of this study was analysed with constant leg and bracing dimensions over the tower height. As expected, results from the fatigue analysis show that dimensions for the legs has to be increased towards sea bottom, while bracing dimensions hast to be increased towards tower top. First calculations were based on a traditional node design with circular members intersecting each other. The shown load results will be used for the futher analysis of new node designs, suitable for mass production of lattice towers.

OBJECTIVES

New node concepts for lattice towers will be developed for the following purposes:

- lower total production costs
- faster production, towards mass production
- more automated production
- more reliable welding results
- prefabrication of components

If the complex fabrication of lattice towers can be solved in an effective way, this type might be a preferred solution for support structures in the future.

Science and Technology

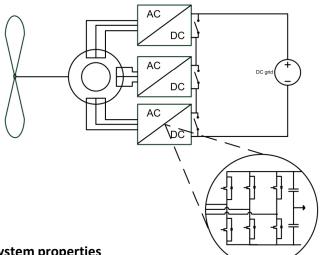
Norwegian University of

Department of Civil and Transport Engineering

D NTNI

Integrated Converter Design with Generator for Weight Reduction of Offshore Wind Turbines

Sverre Skalleberg Gjerde*, Supervisor: Prof. Tore M. Undeland*, Co-supervisor: Ph.D. Roy Nilsen** *Norwegian University of Science and Technology, Trondheim, Norway


**Wärtsilä

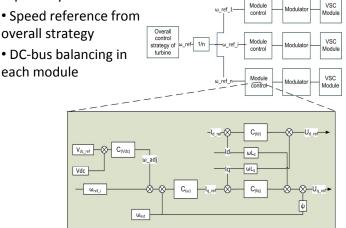
Contact: sverre.gjerde@elkraft.ntnu.no

Motivation: The expected increase in size of future offshore wind turbines poses new challenges to the electric drive. Due to the increased power, transformation to distribution level voltage (medium voltage) in the nacelle becomes necessary. However, the introduction of a 50 Hz transformer adds significantly to the top weight.

Therefore, this work aims to propose and investigate a power electronic converter solution which, together with a special generator design, can provide medium voltage without the transformer for large scale (10 MW) wind turbines.

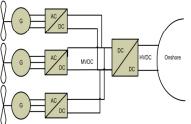
Additionally, the project will follow up recent trends in research, by designing for a DC-collection grid within the offshore wind farm.

System properties


- Generator with N isolated three-phase winding groups
- Each group connected to AC/DCconverter module
- Converter module Voltage source converter
- Crowbars for bypassing defect groups
- •Weak coupling between phases
- DC-output of modules series connected => Build up output voltage
- Medium voltage DC-collection grid

Wind Power R&D seminar - Deep sea offshore wind power

20. - 21. January 2011


Proposed control system

- Each module controlled
- separately

Advantages of converter system

- Modular structure in generator and converter ->redundancy
- VSC module can be changed optimize for voltage levels and harmonic content
- Medium voltage output with no transformer
- Reduced capacitive energy storage

DC-grid

•One conversion step less compared with ACcollection grid \Rightarrow Increased efficiency \Rightarrow Reduced converter cost

Challenges – focus of work

- Balancing the DC-bus of each converter module
- Control under asymmetric operation
- Operation in a DC-grid overall control strategy
- Impact of short circuit on the DC-side

NTNU

Faculty of Information Technology, Mathematics and Electrical Engineering Department of Electric Power Engineering

Remote presence, Operation and Maintenance of Offshore Wind Farms Without Leaving Your Office

Øyvind Netland and Amund Skavhaug

Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

oyvind.netland@itk.ntnu.no amund.skavhaug@itk.ntnu.no

Introduction

There are large areas with good wind conditions available for offshore wind farms, but they are unfortunately more expensive than wind farms on land. Operation and maintenance is one of the reasons for this, and it is estimated that O&M will contribute to 25%-30% of the total energy cost of offshore wind energy.

Reasons for the high costs are:

- Transporting personnel is expensive and time consuming, contributing to offshore operations costing 5-10 times more than operations on land.
- Equipment for heavy lifting is at least 10 times as expensive as on land.
- Offshore wind turbines are inaccessible in harsh weather.

To make offshore wind energy economically viable, technology to make it less expensive is required. The focus of our work is how **Remote Presence** can be used to reduce the number of expensive and time consuming maintenance visits, reducing the O&M cost.

Remote Presence

Remote presence lets a user feel he is present at a remote location, meaning he can sense, move around in and interact with the environment there. This makes working there possible, even without travelling.

For sensing the remote location, sensors that mimic the user's senses is used:

- Camera for vision.
- Microphones for hearing.
- \blacksquare Gas/smoke detectors for smell.
- Temperature sensor for feeling heat.
- Vibration sensor.

Sensors can be placed on a mobile robot that acts on the behalf of the user at the remote location. The user can interact with the remote environment by controlling tools on the robot.

A completely realistic feeling of being at a remote location will be impossible to create without technology from science fiction movies like "Avatar" (as illustrated in figure 1).

A completely realistic experience is however not necessary, a limited system that are tailored to its specific task can be more effective and easier to use. Such systems could be beneficial in many applications where work has to be done at a location that is difficult to access or dangerous. On this poster the application in offshore wind energy is discussed.

Prototype

Figure 3: Remote inspection device

We have created a prototype of the remote inspection device, as seen in figure 3, to be used for further developments and to test the capabilities of such a system. A short demonstration rail have also be created for the device to move on. Figure 4 shows the prototype and the rail. Some properties of the prototype:

Remote Presence for Offshore Wind

The purpose of remote presence for offshore wind farms is to make it possible to do work onboard a wind turbine from land, reducing the need for expensive and time consuming transportation.

Examples of O&M tasks possible with remote presence are:

- \blacksquare Routine inspections.
- Planning maintenance operations.
- Confirming diagnosis from condition monitoring systems.
- \blacksquare Capture images for visual diagnostic
- Cleaning and lubrication.
- Preventive maintenance operations.

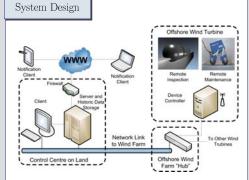


Figure 1: Illustration of remote presence inspired by Avatar

- Able to know its position on the rail.
- Rack and pinion movement to avoid "spin" and make it easier to move vertically.
- Modular design, making it possible to give the device different abilities.
- Dual-rail solution for a stable platform able to carry heavy loads and operating robotic arms.
- Power supply through the rail, avoiding heavy and expensive batteries.

Figure 4: Prototype on rail

Figure 2: System design

In our design of a remote presence system there are two devices inside the nacelle of a wind turbine:

- Remote Inspection Device is a semi-mobile sensor platform moving on a rail installed in the roof and walls of the nacelle.
- **Remote Maintenance Robot** is fully mobile robot equipped with tools for doing maintenance tasks.

These devices are controlled by a **Device Controller**, either autonomously or based on commands from a technician on land using a **Client**. The different parts of the system and their interactions are described in figure 2.

Future Plans for Remote Maintenance

For the future we plan to extend the system to also be able to do maintenance tasks remotely. For such tasks, proximity to the part being maintained is important, which is not possible with the limited mobility of the remote inspection device. The following abilities will be necessary for a remote maintenance robot:

- Able to move freely.
- Ability to climb over obstacles and on walls.
- Be equipped with tools to do maintenance tasks.
- Local intelligence to avoid situations that are potentially dangerous for the robot or the wind turbine.
- Local intelligence to react to unforeseen events.

Conclusions

Advantages using a remote presence system for O&M of offshore wind turbines:

- Preparing a remote operation takes seconds, while it can take days or even weeks to prepare an offshore operation.
- Experienced technicians can use their skills effectively, instead of wasting it in transit.
- Possible to do frequent routine inspection and maintenance, since remote operations are quick and inexpensive.
- Co-operation with condition monitoring system to increase its accuracy.
- Remote operations are possible even in harsh weather.
- Planning of larger operations that are not possible to do remotely.

Acknowledgements

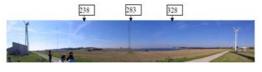
This work has been funded by Norwegian Research Centre for Offshore Wind Technology (NOWITECH).

I would also like to thank Norsk Automatisering AS for funding of prototype building, Viktor Fidje for having the main responsibility for building the prototype, and the master student Tor Mæhlum Karlsen for helping with research and software development.

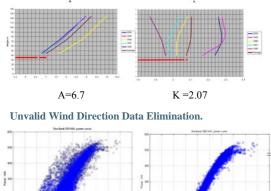
Wind Turbine Power Performance Verification by Anemometer on the Nacelle

Bing Liu, Department of Electric Power Engineering, NTNU

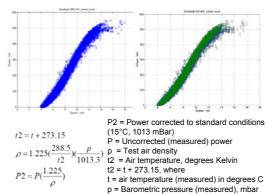
Bing.liu@ntnu.no


Introduction:

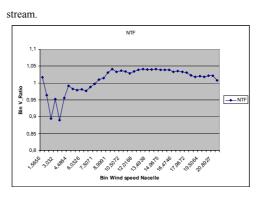
The power curve verification is important for both power output optimization and contractual promising check for wind energy producers. However, the traditional power curve verification by IEC61400-12A is costly and time consuming due to the meteorological metmast tower installation on test sites. The newly published IEC61400-12B gives the possibility of verifying the power curve and AEP (Annual Energy Production) by the existing anemometers on the wind turbine nacelle. The purpose of this project is to investigate how is the validation of power performance method by IEC61400-12B under different weather conditions (wind shear / temperature / Turbulence intensity / wind direction variation) and different types of terrain (Complex or flat terrain at site).



The 5 cup anemometer types for performance evaluation.

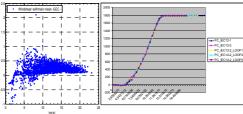

Test Turbine and Test Site :

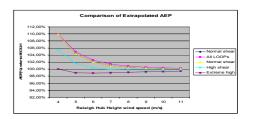
Determine free, undisturbed sectors. Surrounding landscape, terrain, obstacles influence power production.


Discard data where anemometer is within WI downstream sector. Discard data affected by obstacles. Manually discard wrong data due to abnormal WT operation or measurement system errors.

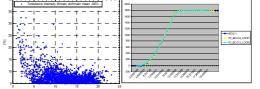
Nacelle Transfer Function (NTF)

The NTF is the relationship between the measured wind


speed on nacelle and the actual wind speed when it is free

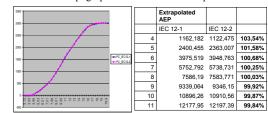

Wind Shear's Influence to Power Curve & AEP

Wind shear is the change in wind speed or direction with height in the atmosphere. The data was divided into 3 groups, representing the different wind shear scope to compare the power curves.


Extreme high	≥0,4 (LOOP 3)
High	0.4 \geq Wind Shear \geq 0.3 (LOOP 2)
Normal	0.3> Wind Shear \geq 0.1 (LOOP 1)
Low	0.1> Wind Shear

In the higher wind speed sections, different wind shear did not bring significant impact to the NTF based Power Curve. In lower wind speed, different wind shear brings slight deviation to power curve & AEP.

Turbulence Intensity (TI) Influence to Power Curve Low TI: (0, 8), Normal TI: (8, 15), High TI: (15, :)


Extrapolated AEP							
		All LOOPs		Low TI 0-8		Normal TI 8-15	
	IEC 12-1	IEC 12-2		IEC 12-2		IEC 12-2	
4	1030,48	1133,21	109,97%	1027,41	99,70%	1113,8	108,099
5	2244,56	2355,23	104,93%	2235,01	99,57%	2312,77	103,049
6	3698,97	3794,96	102,60%	3690,62	99,77%	3741,37	101,15%
7	5180,37	5255,64	101,45%	5174,99	99,90%	5198,32	100,35%
8	6549,01	6605,45	100,86%	6546,26	99,96%	6548,36	99,99%
9	7731,73	7773,37	100,54%	7730,88	99,99%	7718,58	99,83%
10	8692,33	8723,03	100,35%	8692,76	100,00%	8671,54	99,76%
11	9417,43	9440,22	100,24%	9418,66	100,01%	9392,43	99,73%

Different TI did not bring significant impact to the NTF

based Power Curve by IEC61400-12B.

Complex Terrain NTF Analysis

Hilly test site presents obstacles and neighbouring WT. Site calibration was executed according IEC61400-12-1 due to topographical variations of complex terrain.

In complex terrain, different wind shear brings slight

deviation to power curve & AEP.

Conclusions:

- ≻ The IEC61400-12B power performance evaluation method has acceptable variation with IEC61400-12A.
- > Different wind shear / temperature / Turbulence intensity / wind direction variation and different types of terrain (complex or flat) will NOT bring significant deviation to power curve & AEP. (less than 3.54% at wind speed 4m/s @ complex terrain.)

Bing Liu, PhD-Stipendiat på Institutt for elkraftteknikk, NTNU, Apr. 2008 to Mar. 2012 bile: 48356188

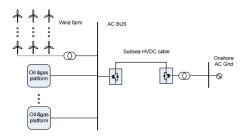
@DTU D

cal Engi ars with GE Wind and nens Ltd. China

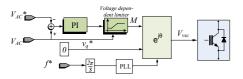
Wind Energy Master Program Offshore Wind Farm Electric System & Transmission.

Norwegian Research Centre for Offshore Wind Technology

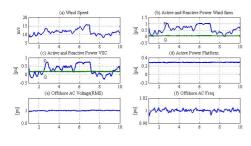
Grid Integration of Large Offshore Wind Energy and Oil& Gas Installations Using VSC-HVDC

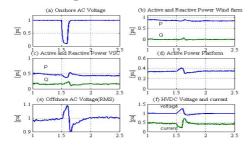

Bing Liu, Department of Electric Power Engineering, NTNU

Bing.liu@ntnu.no

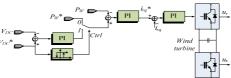

Introduction:

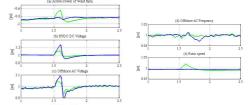
Offshore wind energy will become an important energy source in the near future. On the other hand, the low efficiency of gas turbines or diesel engines at offshore oil & gas installations calls for alternative power supplies. Therefore it is necessary and possible to integrate oil installations and offshore wind farms to the onshore grid by single transmission link. This poster presents an analysis and fault mitigation methods of grid integration of offshore wind farms and oil & gas installations using Voltage Source Converter (VSC) HVDC.


VSC HVDC offshore transmission


Offshore AC Frequency Control

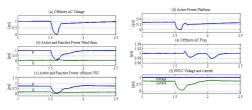
The fixed frequency control strategy is used. First, it enable the VSC to absorb the fast changing wind power generation and achieve bi-direction power transmission. Second, the extra power control loop is not needed, therefore, fast offshore communication systems are not necessary.

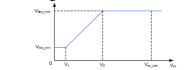

Onshore grid fault:


DC link over voltage and offshore AC voltage variation during onshore fault.

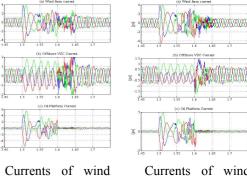
DC link voltage control (DLVC):

An offshore AC grid voltage independent limiter is implemented in the ac voltage control loop via the modulation index (M) of the VSC:





With DLVC controller presence, the HVDC DC voltage, offshore AC voltage and offshore AC frequency (green solid curves in upper figure a and b) peak values are smaller than the configuration without DLVC controller.


Offshore AC Grid Fault Mitigation:

The exact design of the Vac versus Vvsc curve in below figure is depends on the detailed VSC design and how fast the wind generation recovers from faults, in order to reach the active power balance in the offshore AC grid.

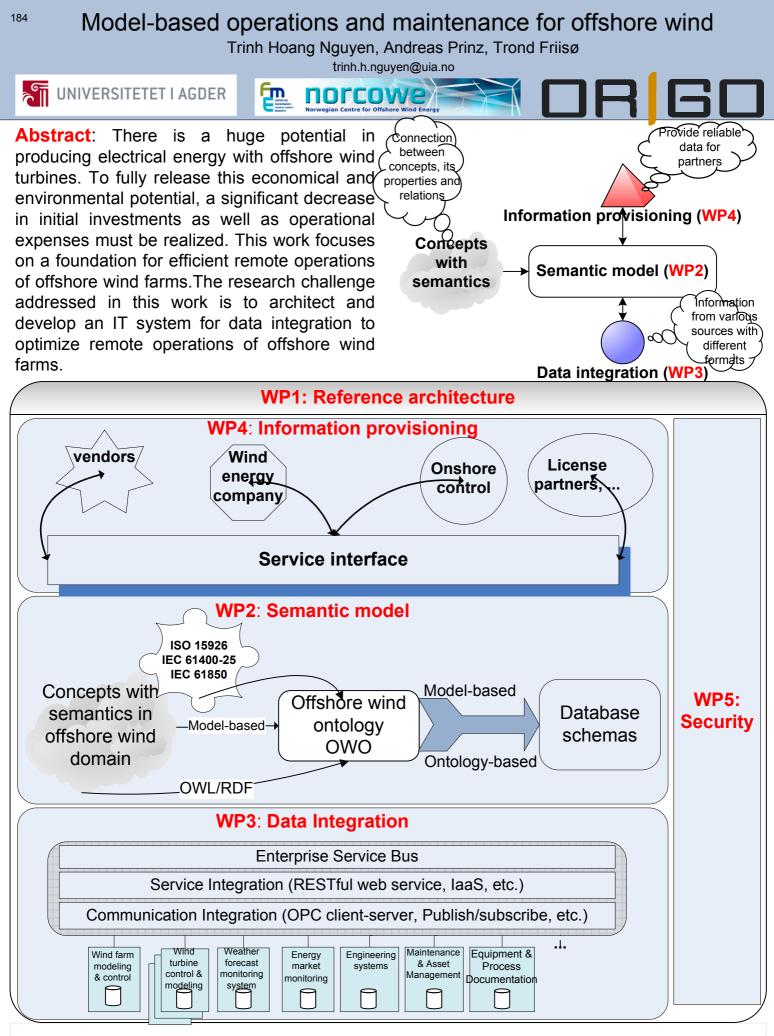
Vac vs Vvsc relationship in voltage dependent limiter.

Currents of wind farm, offshore VSC and oil platform (with ac voltage limitation 1.5 p.u. at offshore VSC) Currents of wind farm, offshore VSC and oil platform (with ac voltage limitation 1.1 p.u. at offshore VSC)

Conclusions:

Several faults mitigation control strategies for the offshore VSC HVDC grid integrating offshore wind farm and oil & gas installations has been proposed in this project stage, for example, the DC link voltage controller for onshore grid faults and the voltage dependent limiter for offshore AC grid faults. Simulation results in PSCAD show the satisfied performance.

Acknowledgements:

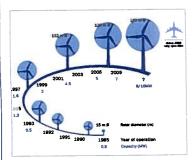

This research was presented under assistance of Statkraft Ocean Energy Research Program.

References :

[1] Bing Liu; Jia Xu; Torres-Olguin, R.E.; Undeland, T.; "Faults mitigation control design for grid integration of offshore wind farms and oil & gas installations using VSC HVDC", SPEEDAM, PP. 792 – 797, June 2010

E.

Conclusion: As the outcomes of PhD project, we expect to get a working system that is able to secure cost-efficient operation of offshore wind turbines. In addition to that an offshore wind ontology (OWO) will be ready to use and opened for the future extension.



Vortex Methods for Integrated Dynamic Analysis of Offshore Wind Turbines

Lene Eliassen, University of Stavanger

Supervisors: Jasna Bogunovic Jakobsen (UiS), Jonas Thor Snæbjørnsson (UiS)

- ✓ What advantages does the vortex method provide compared to the Beam Element Momentum (BEM) Method?
- ✓ Which method is the best tool to be used on the next generation wind turbines?
- ✓ Can we develop a state-of-art vortex method for Horizontal Axis Wind Turbines (HAWT) and apply it in an integrated dynamic analysis of an offshore wind turbine?

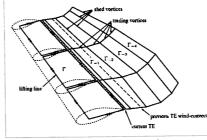


Figure 2: The wake geometry in AWSM [2].

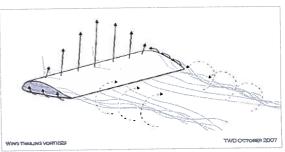


Figure 3: An illustration of wing trailing vortices. [5]

Figure 1: An illustration of the growth of wind turbines from 1985 to 2009, [1].

Introduction and motivation

The size of wind turbines have increased significantly over the last years, see fig 1. This development has required more advanced design tools. Instead of simple static calculations (assuming a constant wind) advanced dynamic simulations are used.

Most codes that are used to perform such dynamic simulations rely on the Beam Element Momentum (BEM) method. The BEM method is very efficient, and provided that reliable airfoil data exist, yields fairly accurate results.

However, more advanced numerical models based on the Euler and Navier-Stokes equations are becoming so efficient that they have begun to replace the BEM method in some situations. In these approaches the flow field is modelled more directly, and less empirical input is required compared to the BEM method.

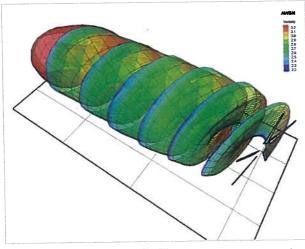


Figure 4: Wake modelling of a 5-bladed turbine in yawed flow by the vortex code AWSM. [4]

Further work

A state-of-the-art review of the aeroelastic modelling of wind turbines using the vortex methods will be made. This includes evaluating existing vortex codes for aeroelastic modelling of wind turbines, such as AWSM, GENUVP and HAWTDAWG.

The aim of the study is to implement a vortex model based code in an integrated dynamic analysis of an offshore wind turbine.

A short description of the vortex model

Wind turbines are subjected to atmospheric turbulence, wind shear from the ground effect, wind directions that change both in time and in space, and effects from the wake of neighbouring wind turbines. These operating conditions experienced by the blades are an important part of the aerodynamic analysis, and can be implemented by using the vortex model.

In the vortex models the rotor blades and the wake are represented by lifting lines or surfaces. There are several methods to model the blade and the wake. In figure 2, blade is represented as a lifting line on which a grid of horseshoe vortices are superimposed. The velocities at an arbitrary point can be calculated using the law of Biot-Savart. [7]

The vorticity in the vortex models is usually limited to the modelled blades and the wake, the remaining flow is assumed inviscid. The fact that viscous forces are neglected has restricted the usage of such models on wind turbines. There are however full 3D models of viscous-inviscid interaction techniques that can be used in aeroelastic analysis. [8]

Vortex codes and Horizontal Axis Wind Turbines

At the moment there exist some codes (based on vortex models) that are aimed at aeroelastic modelling of wind turbines. The most known codes are: -AWSM (Energy Research Centre of the Netherlands), [2] -GENUVP (NTUA,CRES) -HAWTDAWG (University of Glasgow), [6]

An extended version of the vortex wake code HAWTDAWG, called Dynamic Prescribed Wake (DPW), has been built in to the aerodynamic code AERODYN and linked to the structural code FAST. Comparisons have been made with the DPW, the BEM and the Generalized Dynamic Wake (GDW) models built into AERODYN and to experimental results. The vortex wake model gives a better physical representation of a turbine wake than BEM and GDW, however the code needs further validation [6].

References:

 European Wind Energy Association, ewea.org, last visited 17.01.2011
 van Garrel, A. "Developement of a Wind Turbine Aerodynamics Simulation Module", ECN-03-079, August 2003

[4] AWSM, http://www.ecn.nl/fileadmin/ecn/units/wind/docs/Aerodynamics/AWSM B-09-013.pdf, downloaded 18.01.2011

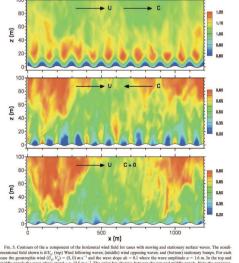
[5] Ground Effect, www.ground-effect.com, downloaded 18.01.2011

[6] Currinm, H. , Coton, F. N. and Wood, B. "Dynamic Prescribed Vortex Weka Model for

AERODYN/FAST", ASME J. Sol. Energy Eng., vol 130, August 2008 [7] Bertin, J. B., Michael, L. S., "Aerodynamics for Engineers", Prentice Hall, USA, 2nd Ed, 1989

[8] Hansen, M. O. L, Sørensen, J. N., Voutsinas, S., Madsen, H. Aa. " State of the art in wind turbine aerodynamics and aeroelasticity" Aerospace Science, 42 (2006), pp 285-330

Martin Flügge^{1,2}, Joachim Reuder^{1,2}


¹Geophysical Institute, University of Bergen ²Norwegian Center for Offshore Wind Energy Martin.Flugge@gfi.uib.no

Atmospheric turbulence measurements close to the ocean surface

BACKGROUND

In the last decade offshore wind parks have been placed close to the shoreline. Due to the increased demand of renewable energy the development of wind parks far offshore and for larger water depth has started. The main challenge is that up to now only very few and sporadic meteorological measurements are available for the highly required characterization of the marine atmospheric boundary layer (MABL) under real offshore conditions, e.g. from the German FINO platforms for shallow water and results from various campaigns using the U.S. research vessel FLIP.

Model results from Sullivan et al. 2008 indicate that ocean surface waves influence the lower part of the marine atmospheric boundary laver (MABL) in horizontal and vertical directions. Direct turbulence measurements of MABL turbulence will distinctly improve the understanding of the turbulent momentum transfer in the lower atmosphere and the corresponding exchange processes with the sea surface. For offshore conditions, this involves measurements from floating platforms, e.g. buoys or ships. Platform motions results in an extra peak in the power spectra that is usually approximated by a straight line (figure 2). This procedure can also remove real atmospheric motions induced by the wave field in the same frequency range. To overcome this issue we use a mathematical algorithm that transforms wind speed from a moving (floating) coordinate system to "actual" measured wind speeds in a fast reference system. In our approach, the collected data will be corrected for platform motion and orientation before the data analysis.

Inertial Subrance

Figure 2: Sketch of the turbulence power spectra with (red) extra peak do to platform motion and its (dashed) straight line approximation.

Figure 1: Model results from figure 5 of Sullivan et al, 2008 suggesting an impact of ocean surface waves on the MABL in both horizontal and vertical directions

References

iddle panels the wave phase speed c = 12.5 is ophic winds near the surface in the top panels

Edson et al. 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15(2), 547-562.

Sullivan et al. 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves ./ Atmos Sci., 65(4), 1225-1245 Türk and Emeis, 2010: The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn., 98, 466-471

THE SYSTEM

Two identical eddy correlation systems have been purchased via NORCOWE. At the moment the systems are assembled at the University of Ireland in Galway. Software adaption and the first test of the components have been performed in December 2010. The planned take over and the first tests of the complete system is planned for the beginning of 2011.

System components

- The Sonic anemometer is a Gill R3A-100
- Sampling rate up to 100Hz
- · Both binary and ASCII output available
- · Can provide an average of a fixed number of readings

- The attitude information is provided by the Crossbow **NAV440**
- Integrated GPS and Attitude & Heading Reference system (AHRS)
- · Utilizes low drift based MEMS-based inertial sensors with GPS
- Data output provided at rates of >100Hz

Outlook

The system will first be used in short test campaigns, first in the laboratory, than on land and finally close to the shore at sea. Later on it is planned to mount the system on a moored buoy a few kilometers off the Norwegian coast. A third similar system is operated aboard the Irish research vessel R/V Celtic Explorer. A mathematical algorithm that transforms wind speed from a moving (floating) coordinate system to "actual" measured wind speeds in a fast reference system has been provided by James Edson, University of Connecticut, for adaption to the project. In addition, a data set from the Air Sea Interaction Tower (ASIT) and a nearby meteorological buoy off the coast of Martha's Vineyard, Massachusetts, are also available for the advancement of the motion correction code. Collaborations with the turbulence groups of Brain Ward from the National University of Ireland and James Edson from the University of Connecticut have been established. This enables us to have joint field campaigns in both Norway. Ireland and the USA.

Figure 5: Overview of the systems sensor head

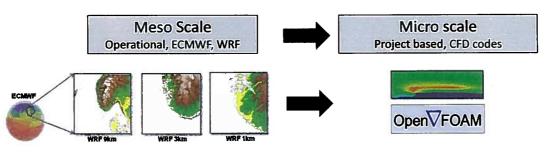
Figure 3: The systems Gill R3A-100 and the Crossbow NAV440 with GPS antenna.

Power supply Figure 4:The Campbell enclosure with MOXA. MOXA UC-7420 Power Supply and Connectors. Campbell Connectors enclosure

The industrial computer MOXA UC-7420 acts as data logging and control unit for the system:

- RISC based ready-to-run LINUX computer
- 8 RS-232/422/485 serial ports
- PCMCIA interface for WLAN communication
- CompactFlash and USB-port for adding external memory
- Using WLAN all recorded data is send to an external PC and saved on its hard disk

The UC-7420 and the power supply (+15V) for all sensors will be housed in an Campbell ENC 16/18 enclosure. The NAV440 will be housed inside a watertight box at the sensor head. Cables will run between the Campbell enclosure and the sensor head.



Improved energy forecast for Offshore Wind farms

Siri Kalvig, University of Stavanger and StormGeo Supervisors; Jafar Mahmoudi (IRIS/UiS), Ivar Langen (UiS), Nina Winther (StormGeo)

✓ What environmental input data do the engineers needs for operations and maintenances and in order to ensure reliable design? How can meteorologist and oceanographers best forecast these input data?

 \checkmark Ensure improved energy forecast by combining the meteorological and oceanographic 'macro and meso scale world' with the structural engineering and material sciences 'micro scale world'.

Motivations;

✓ The air and sea interact and exchange momentum, heat and gases in the Marine Boundary Layer (MBL) in a complex way. This air-sea interaction depends in a sensitive way on the sea state.

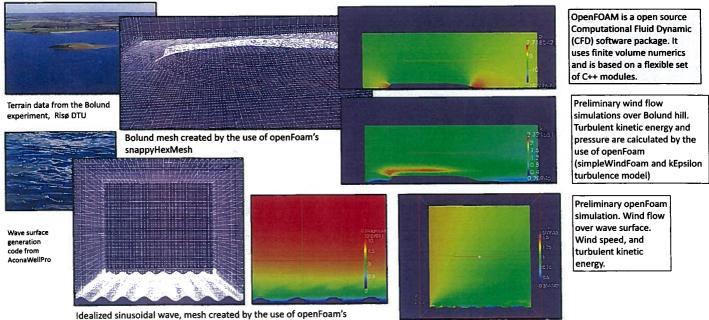
 \checkmark Accurate wind estimations requires high quality offshore wind forecast and this will depend on a fine scale coupled model system that incorporates the air-sea interaction.

✓ MetOcen modeling is essential for both assessment (hindcast) and for operation and maintenance. Do we need to account for stability and changing sea surface roughness in design calculations and for energy forecasts?

✓ Idealized studies of air-sea interaction gives guidelines on how to set up an operational fine scale coupled model system. With such a system it will be possible to minimize power loss and perform correct load calculations.

✓With a new and better understanding of the air-sea interactions it is important that the most representative input parameters to various dynamical response tools and the most representative boundary condition for the CFD simulations is used. \checkmark There is a limit for when it is cost efficient and useful to use dynamical and coupled MetOcean models at very fine resolution.

Tasks;


Review of relevant literature

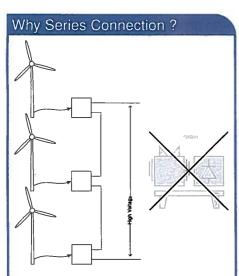
• Investigate who roughness and stability is interpreted in the standards for Offshore Wind turbines (IEC 61400-3). Identify gaps between "best knowledge" (science) and "best practice" (codes, standards)

 Simulate possible increased loads/fatigue due to changing roughness and stability over sea surface.

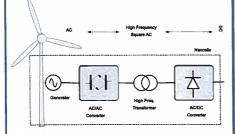
• Simulate wind effects in OpenFoam over different surface (set up from Bolund Experiment) and with moving grid (wave - set up from Sullivan et al.)

 Suggest the optimal configuration of an operational model set up in order to maximize quality forecast for both forecasting and nowcasting and within feasible computational time.

snappyHexMesh. It creates unstructured mesh of polyhedral cells.


Series Connection of Offshore Wind Turbines

Alejandro Garcés Ruiz , Marta Molinas Norwegian University of Science and Technology alejandrogarces@gmail.com, marta.molinas@elkraft.ntnu.no


Introduction

SERIES connection of wind turbines is a promising topology for offshore grids. However, it carries with technological challenges which needs to be further studied: variation in the wind velocity causes variations in the output power and therefore in the output voltage. As a result of that, a wide variation capability of output voltage is required in each turbine and a coordinated control must be developed. The objectives of this research include to develop an optimal power flow for series connection of offshore wind farms in order to extract maximum power.

- Losses in the offshore grid are as low as the losses in the transmission stage since the current is the same.
- The investment could be reduced since the length of cable is shorter than in parallel connection and the offshore platform might not be required.
- Potential to improve the efficiency and overall weight.

Converter Technology

Objectives:

- Size and weight reduction
- Increase efficiency
- Increase reliability

Model

A simple way to control the entire system, is to guarantee equal power generated by each turbine. However, imposing proper constrains, it is also possible to use an optimal load flow algorithm to maximize the power on shore and minimize losses as follow:

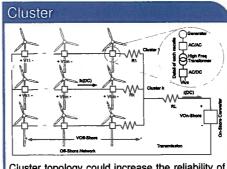
$$nax \ P_T = \sum_k \sum_m P_{km} - \sum_k R_k \cdot I_k^2 - R_L \cdot I_L^2$$
(1)

subject to

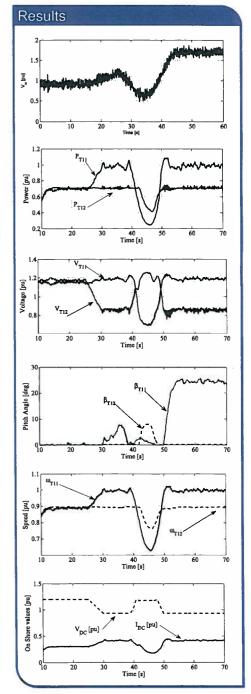
$$U_{onshore} = U_{offshore} - R_L \cdot I_L$$
 (2)

$$U_{offshore} = \sum_{m} U_{km} - R_k \cdot I_k$$
 (3)

$$I_L = \sum_k I_k \tag{4}$$

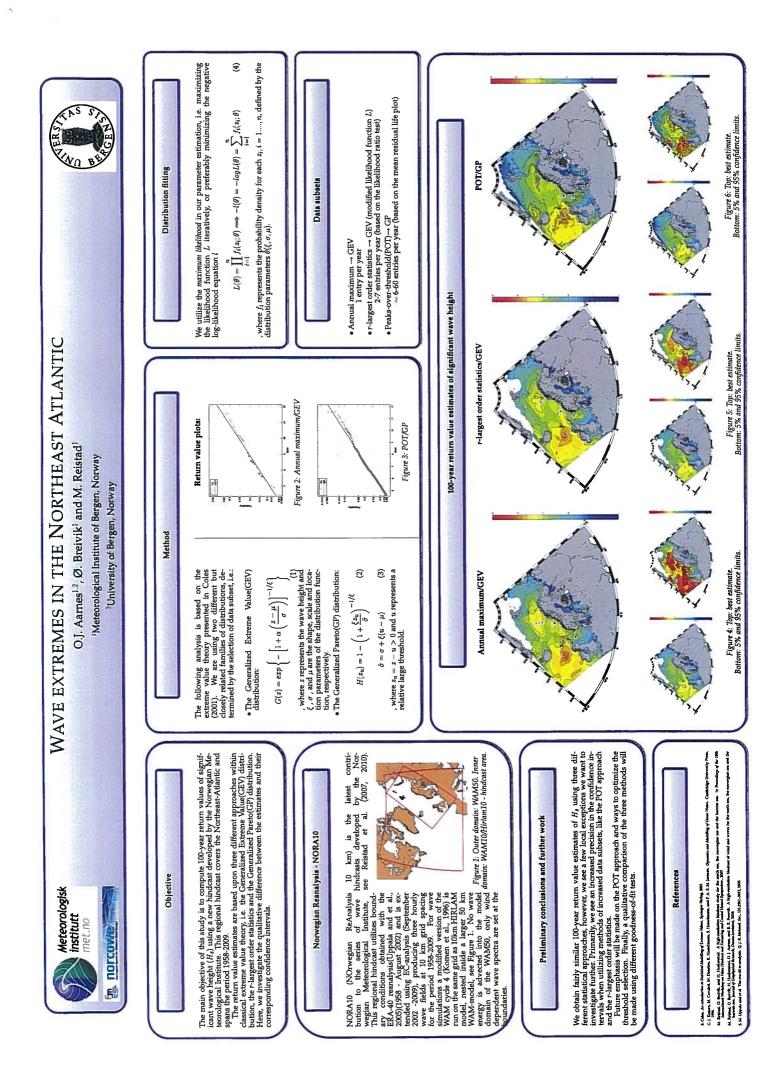

 $P_{km} = V_{km} \cdot I_k$

(5)


 $U_{km(min)} \leq U_{km} \leq U_{km(max)}$ (6)

 $P_{km(min)} \le P_{km} \le P_{km(max)} \tag{7}$

$$P_{km(max)} = \begin{cases} \left(\frac{V_w}{V_{w(nom)}}\right)^3 & V_w \le V_{w(nom)} \\ 1 \ pu & V_w > V_{w(nom)} \end{cases} \end{cases}$$
(8)


Cluster topology could increase the reliability of the system holding the advantages of both series and parallel connections.

Conclusions

A coordinated control is required for series connected wind turbines which takes into account the electrical constrains of this type of connection. Conventional maximum tracking point needs to be replaced by an optimal power flow, which takes into account not only the maximum transfered power but also the electrical constraints.

The most clear advantage of series connection is the reduction of the off shore grid losses and the substation platform avoidance. Furthermore, in the present concept no platform will be required offshore and less cable is used. The voltage limits in one turbine could impose power limits in the other turbines when the wind velocity is different between them. Therefore, series connection is a promising alternative if the covariance in the wind velocities are close to zero.

Response of Tension Leg Configuration subjected to wave & aerodynamic thrust loading

Regular wave + ramped thrust - time

G. K. V. Ramachandran, J. N. Sørensen, J. J. Jensen and H. Bredmose

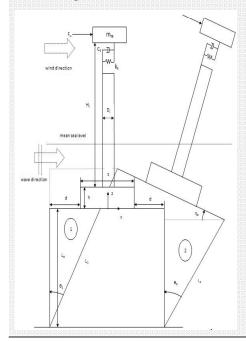
Introduction

Results

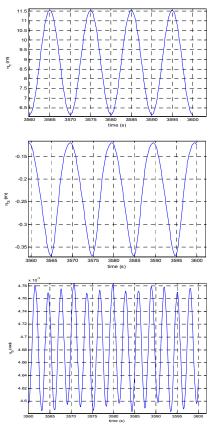
domain response

In order to tap the wind potential available in the deep sea, floating offshore wind turbine configurations have been proposed, which needs mathematical tools to accurately predict the hydro-aero-servo-elastic loads on wind turbine and platform.

For the initial computations, a Tension Leg Platform (TLP) configuration has been chosen.


Proposed Location - wave & wind climate

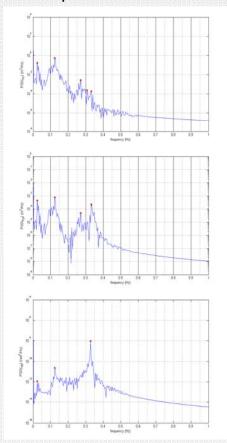
Parameter	Value
Significant wave height	7 m
Peak period	10 s
Water depth	200 m
Annual avg. wind speed	8-10 m/s
Predominant wind direction	W, SW


Assumptions

- · Platform is rigid, having 6 DOF. In 2D, these reduce to surge, heave and pitch.
- Tendons are extensible.
- · Tower bending *flexibility* considered.
- . Airy wave theory for irregular waves. · Wave loads - Morison's equation.

Initial Configuration

Statkraft Ocean Energy **Research Program**


Comparison of Results - Ramped thrust case

		Regular H = H _s /2	Irregular H = H _s
	Mean	8.875	9.0
η_1	Max.	11.5	11.25
(m)	SD	1.91	0.74
η ₃	Mean	-0.25	-0.23
	Max.	-0.375	-0.35
(m)	SD	0.09	0.04
η ₅ (rad/°)	Mean	0.005/0.27	0.005/0.27
	Max.	0.005/0.27	0.005/0.28
	SD	6.6E-5/	6.2E-5/
		0.004	0.004

NTNU

Statkraft

Irregular wave + ramped thrust - frequency domain response

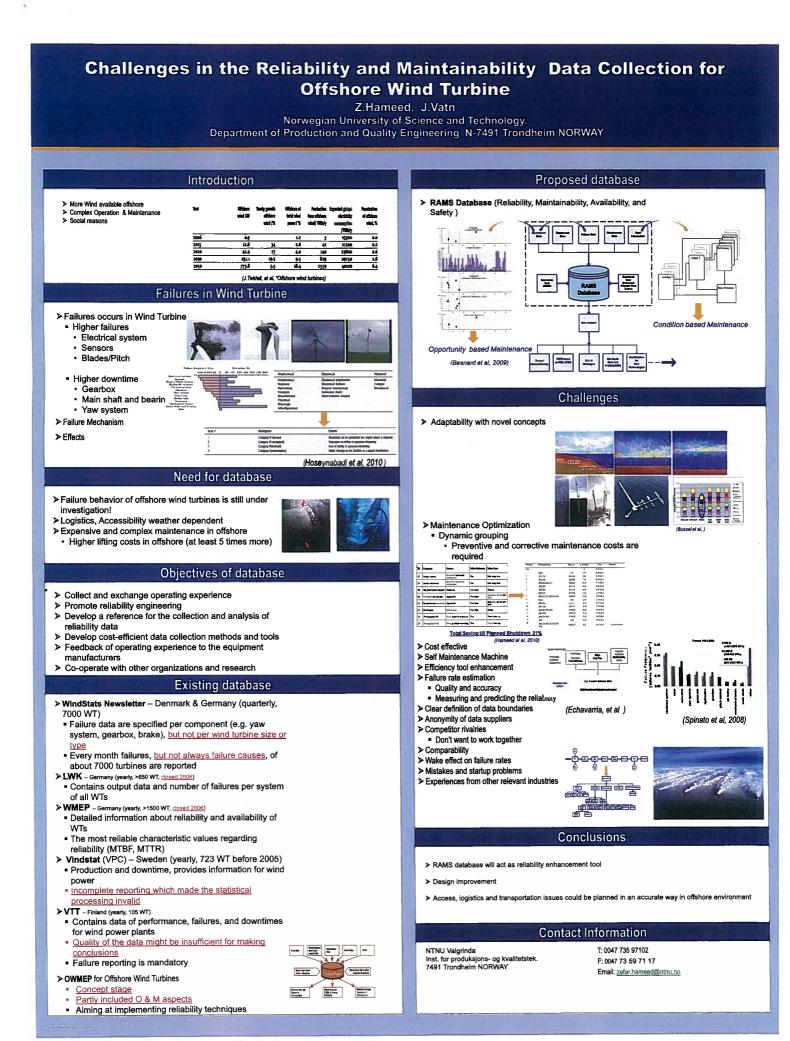
Conclusions

- The coupled dynamic model has been implemented.
- Results verified under static conditions.
- The dynamic responses are complying with that in the literature.

References

Joensen, S, Jensen, J.J and Mansour, A.E (2007), Extreme value predictions for wave and windinduced loads on floating offshore wind turbines using FORM, 10th Int. Symposium PRADS'2007, Pennsylvania, USA.

2 Zhen-Zhe Chen, Deepwater Floater for Wind Turbines (2005), M.Sc Thesis, DTU.


Acknowledgements

This research was carried out as part of the Statkraft Ocean Energy Research Programme, sponsored by Statkraft (). This support is gratefully acknowledged.

DTU Mechanical Engineering

Department of Mechanical Engineering

Control and Operation of Multiterminal HVDC for Market Integrated Offshore Wind Farms

TEMESGEN M. HAILESELASSIE, KJETIL UHLEN, TORE UNDELAND

Abstract—The North Sea area has a great potential for exploiting vast amount of offshore wind energy. A multiterminal HVDC (MTDC) connection can provide a suitable grid integration solution for the offshore wind farms and at the same time can create electricity market opportunities between all onshore and offshore MTDC connected points.

Figure 1: Early stage scenario of multiterminal HVDC in the North Sea

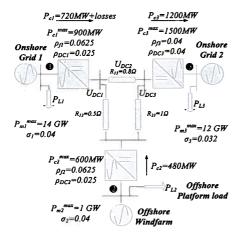


Figure 2: A three terminal HVDC model used for simulation

Salient Features of the Employed MTDC Grid Control Scheme

- Dc voltage droop control for instantaneous balancing power inside the MTDC
- > Frequency droop control employed for the converter terminals
- > No need for communication between terminals

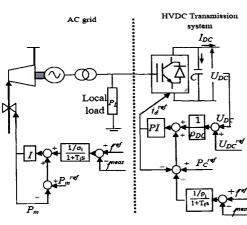


Figure 3: Complete schematic of the VSC-HVDC terminal controller

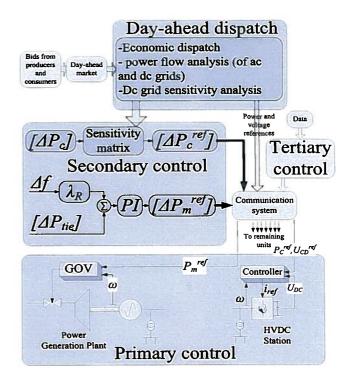


Figure 4: Flow chart showing operation of MTDC in a market integrated system

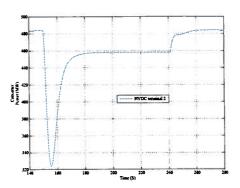


Figure 5: Time response of HVDC terminal power for load changes and the effect of secondary control

Conclusions

- Robust control of MTDC has been achieved by dc voltage droop control.
- No need of fast communication between terminals for instantaneous power balancing under normal operations.
- Primary and secondary control of MTDC integrated has been system demonstrated.
- o MTDC can be readily operated based upon the electricity market.

NOWITECH

Norwegian Research Centre for Offshore Wind Technology

Analysis of Atmospheric Boundary Layer of

Frøya Test Site

G. Tasar, F. Pierella, L. Sætran. Department of Energy and Process Engineering, Norwegian University of Science and Technology,

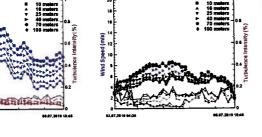
• Lidar

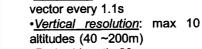
1. LOCATION

Skipheia is wind measuring station in Titran, Frøya, run by NTNU which is located on the south west tip of Frøya (Sør Trøndelag). The station is 200 km away from Trondheim and NTNU. It is highly exposed to ocean winds.

3. RESULTS

Directional distribution


•Ten minutes averaging: Influence of wind direction on stability.


•Ten minutes averaging: Velocity components and turbulence intensity patterns.

•Turbulence: Turbulence intensity and standard deviation variation at different levels.

•Atmospheric Spectra: Comparison of different levels.

- asanawasasaa

•Probed length: 20m •Reported accuracy: 0.2 m/s

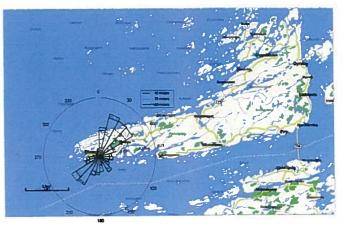
•Frequency : one 3D velocity

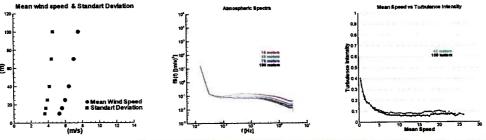
2. FACILITIES

• Three masts: 2 x 100m , 1 x 45m

Temperature sensor at each level

Measurement cottage


•Lidar (Light Detection and Ranging)


Additional Mast (45m) in nearby island

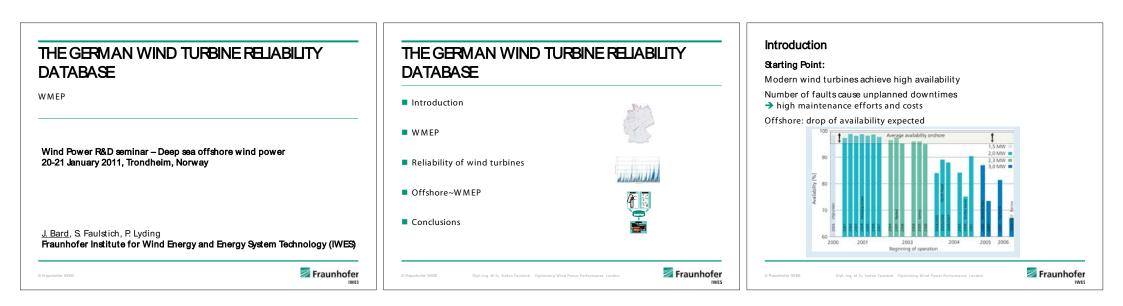
•Twelve anemometers, two at each level

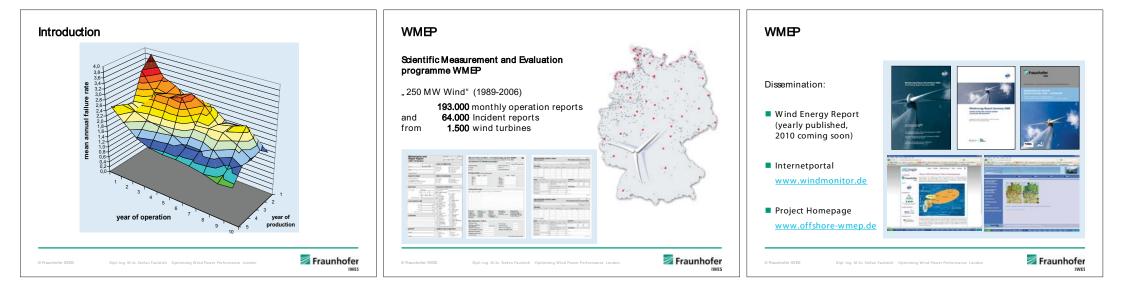
- •Range: 46 m/s
- Ultrasonic Gill Anemometers
- •<u>Range:</u>0 65 m/s •<u>Accuracy:</u> ±2 % @ 12 m/s •Resolution:0.01 m/s •<u>Offset:</u> ±0.01 m/s

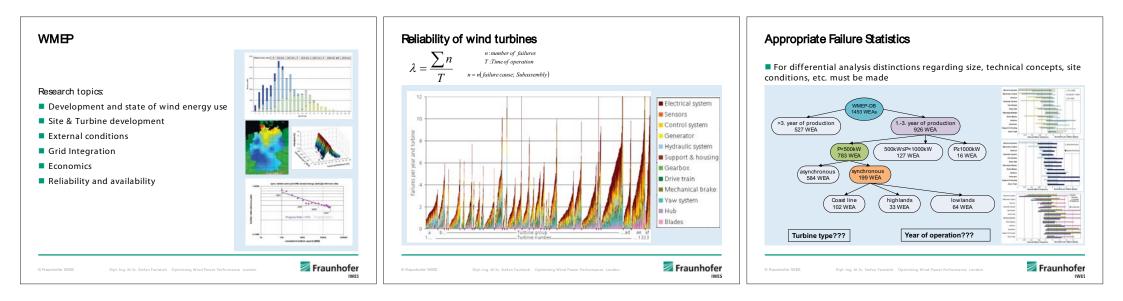
References:

1. Tore Heggem; Measurements of Coastal Wind and Temperature; PhD Thesis, NTNU; ISBN 82-7861-056-8.

2. R. B. Stull; An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers.


D) Operations & maintenance


The German wind turbine reliability database (WMEP), Jochen Bard, Fraunhofer IWES


Framework for risk-based O&M planning for offshore wind turbines, Prof John D Sørensen, Uni. of Aalborg

Cooperation on O&M and LCC analysis with Vattenfall, F. Besnard, Chalmers Uni. Technology

HSE challenges related to offshore renewable energy, Camilla Tveiten, SINTEF

Reliability based maintenance

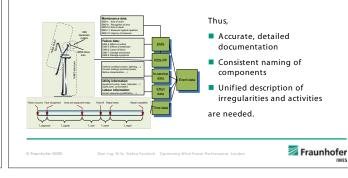
Increasing availability:

- → extending uptime
 - → increasing reliability of turbine and sub-assemblies
- → reducing downtime
 - → qualified maintenance
 - → efficient strategies for spar parts
 - → additional preventive measures

Basis for reliability based maintenance is

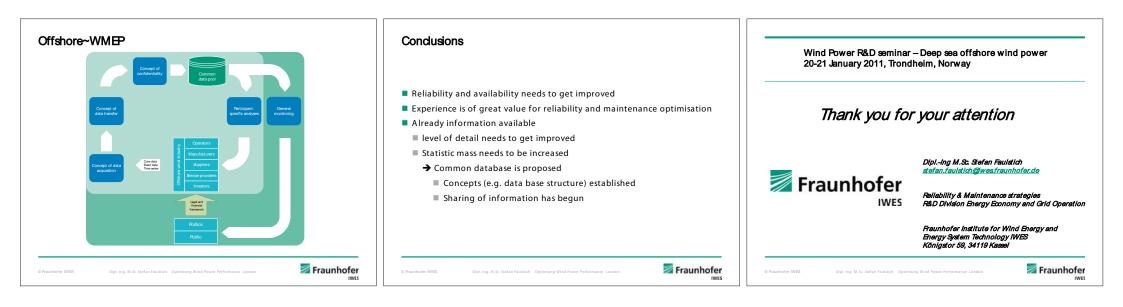
- structured reliability characteristics
- validated maintenance costs
- in consideration of operating conditions (reference values)

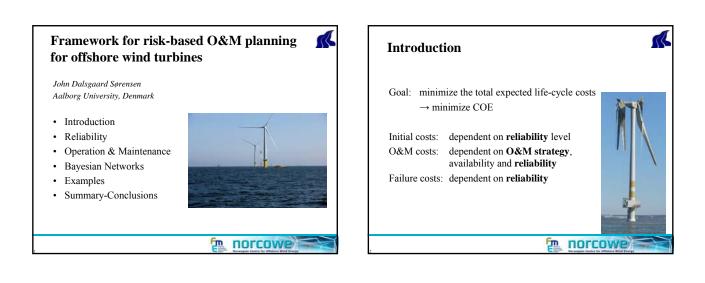
→ Accurate and detailed documentation, consistent labelling of subassemblies, and unified description of events are needed

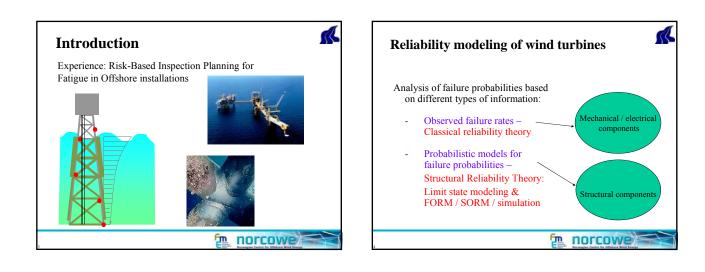

stefan Faulstich Optimising Wind Power Performance London 🗾 Fraunhofer

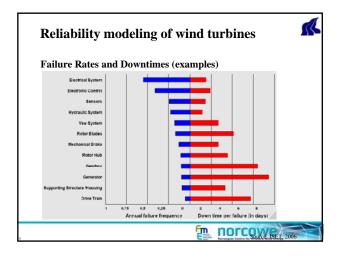
Appropriate Failure Statistics

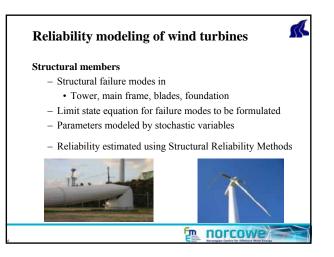
For reliability based maintenance it is essential to know

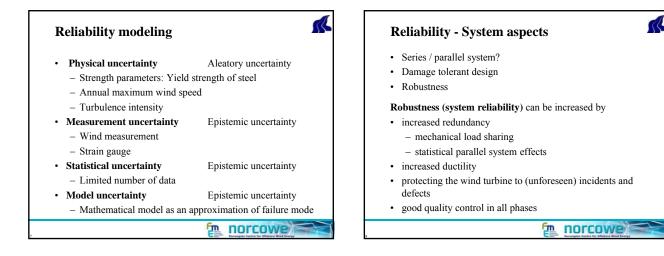

- structured reliability characteristics
- validated maintenance costs

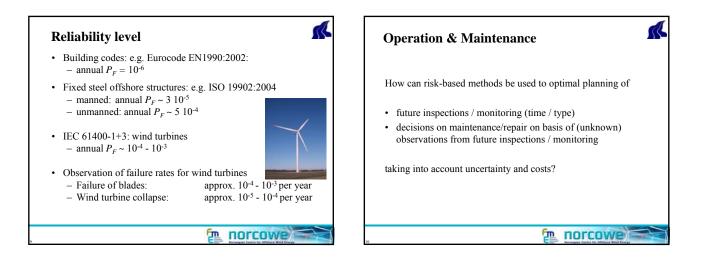

taking into account the operating conditions (reference values).

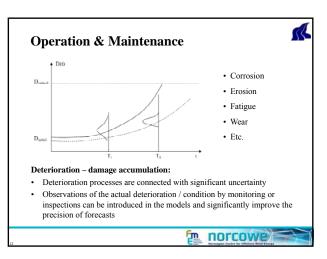


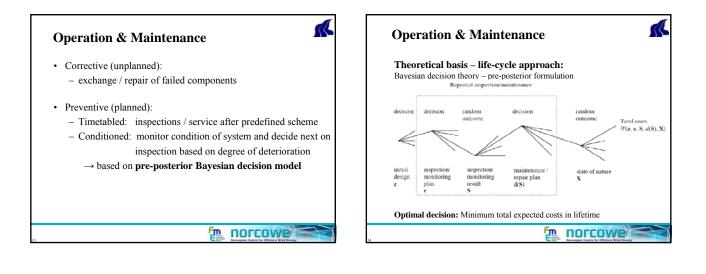

<section-header><section-header>

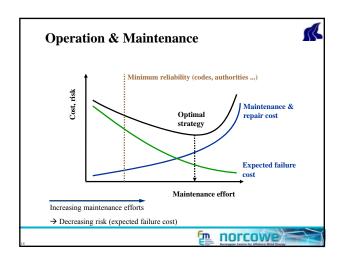

🜌 Fraunhofer

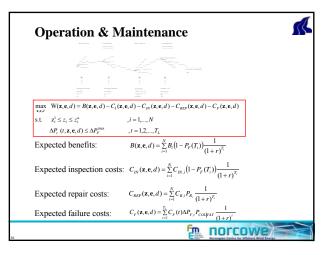




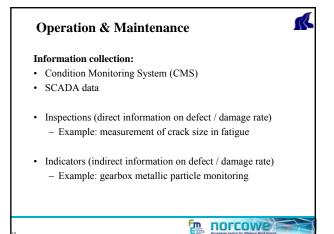


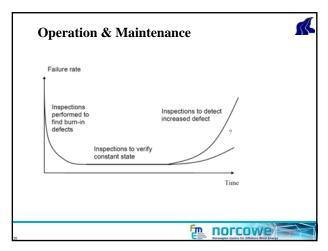


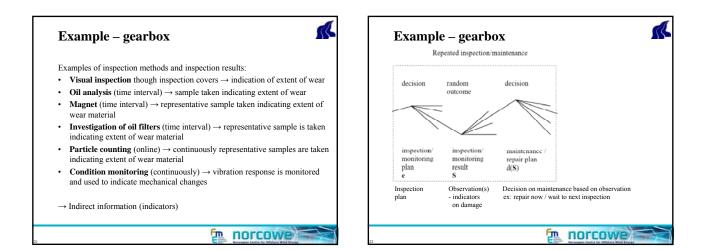


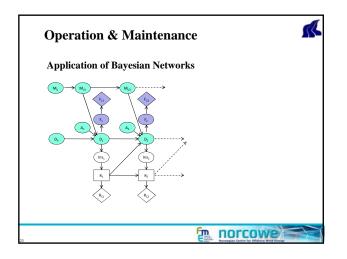


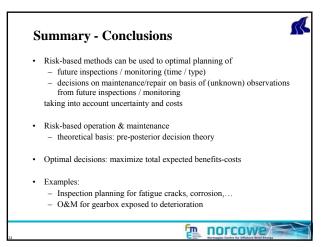


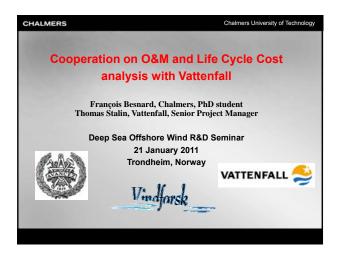


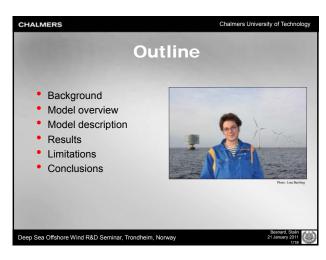


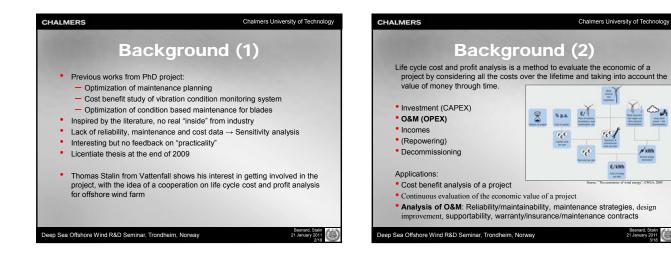


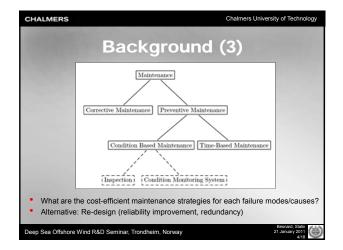


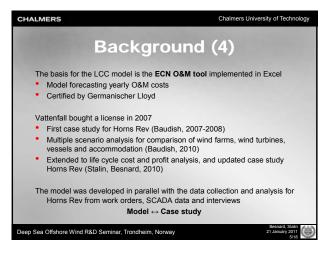


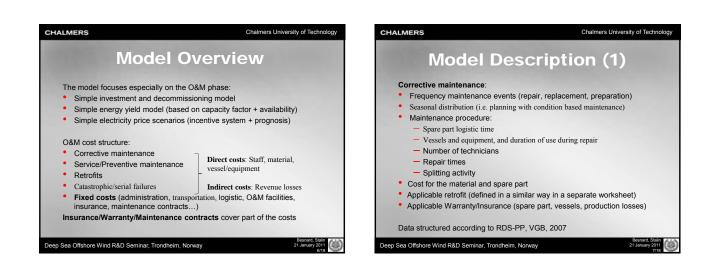


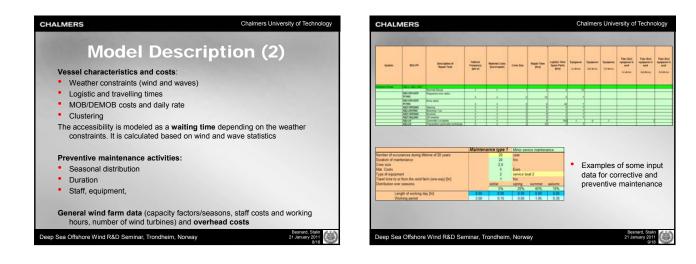


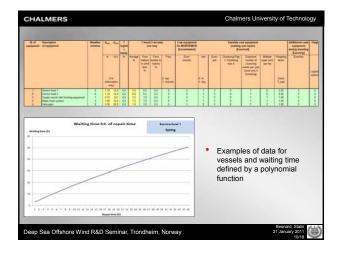


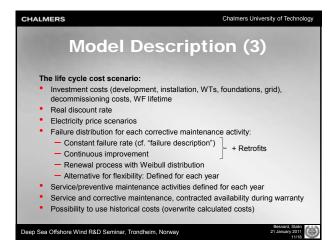


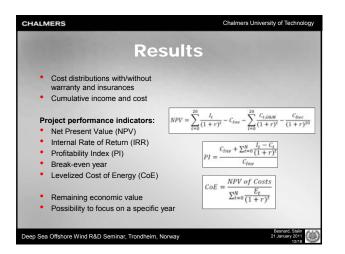

C.A

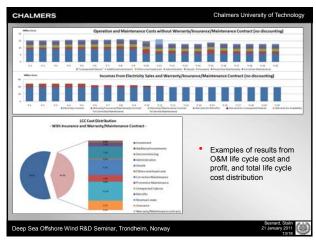


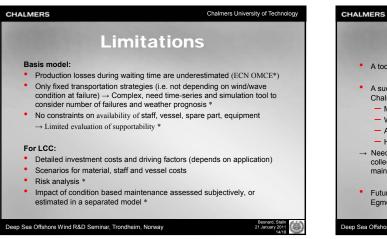


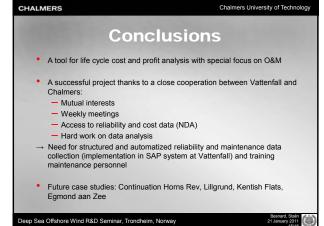


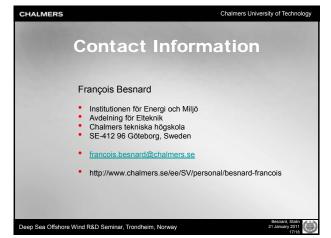


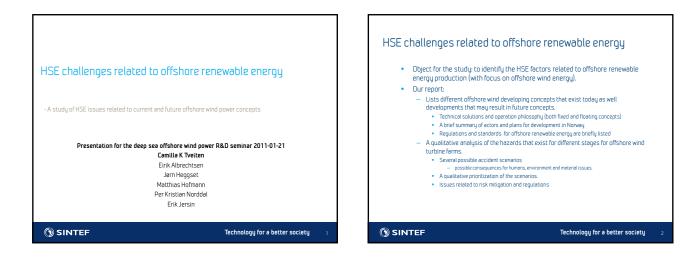


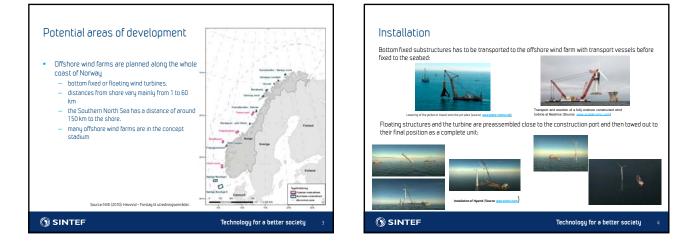


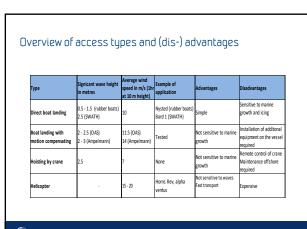




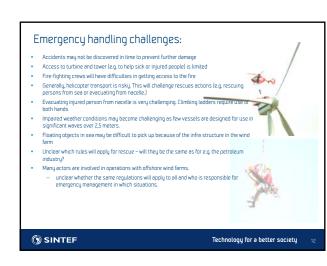







Deep Sea Offshore Wind R&D Seminar, Trondheim, Norway

Besnard, Stalin 21 January 2011 18/18



🕥 SINTEF

Technology for a better society 6

Technology for a better society

Operation		Maintenan	intenance		
Operation		Manrenan			
	Hazards	Historia d	Hannels Fulling structure load whitest Work in books. Mine constants, Minis failure, structured (allows, failure territy		
Mechanical	Falling structure/ load/ object (blade failure, structural failure) Potential energy (work in height, filing operations) Klinetic energy (worsels, helicopters, moving parts, rotating parts, surbise overspeed)		pun, neuro Inform) Persuid averge (work in briefste, kling operations) Earter averge (work, heliospine, moring parts, mining parts, tabitecenequest) Basyadyn Earond averge (qwings etc.)		
Vibration	From machinery and tools/ equipment	Vibration	From machinery and instel/ oppiparent	1	
Electrical	In turbine Short circuit Overcharge	Electrical	le tolinar Bont sinon Chen bong Electronist plenomena/deck.opatk(pilina)	1	
	Electrostatic phenomena (chock, spark/ignition)	Thread under lise	Prevand replexion	1	
Thermal onoke fire	Fire and explosion	Kalain	From incircuments?	-	
Radiation	NA From machinery and tools' equipment	Solar Insulfaciant representa-	Whether and unless from machinersi Human error	-	
Noise Insufficient erronomics	From machinery and tools' equipment Human error	i continuitore and design i	Human rever Prysielingical effects due to heavy MI and repeating meromenics, suffering and reading positions etc.		
(construction and down)			Work in bride		
(construction and design)	Physiological effects (unfortunate working positions etc.)		Eigpery surfaces		
	Psychosocial effects (mental overload, mental underload, stress		Wolding alone?	1	
	etc.)		Pepeles social effects (mental correload, mental andre load, stree, etc.)		
	Absent possibility to see deviations in system operation	Environmental effects (internal)	Bigh or low knopenium Dang reviewenenk inside torser		
	(Human Machine Interface)				
Environmental effects (internal)	Damp-invitionment		Homan access and opens		
	Corrosive environment	Dargementiquits, governer	Childrey Florenable	1	
	Slippery surfaces	and the second se	Flammable		
	Base' ground failure		(minute)		
Dangerous liquids, gases or	NA	1	Elemental (andresion, equatidars?)		
materials			Cannaler		
Environmental effects, esternal	Wad	1	Cardengenic Namilal an anno		
	Waves and currents	Technologial effects, relevand	Rombi us years Ved	-	
	Liebening		Nern eni cormit		
	Earthenake (7)		Liphinning		
	Riad attike		Barbayalar Badayalar		
	Changes in scaled conditions	Ormetering	Eal order Der weiser	4	
Orranizational	Changes in searce conditions	Crystantia	Lack of convolutions		
organizational			Under relevant manufality		
	Lack of relevant competence		Insillation providers		
	Unclear roles and responsibility		Insufficient salety equipment		
	Insufficient procedures (if remotely controlled)		Neurgeur of machinery and equipment benefficient effective is a sur of source math.)		
	Lack of communication from on-hore control morns to		Indexession parameters (see a spar para)		
	offshore installation		Lack of communication from conduct control resource of these installation		
Terrorism/sabotage	Sabotage	Trentedultation	Substant	1	
	Terrorism				

Reported incidents.

Icing

() SINTEF

defect of parts Failure elec.s

ort circuit

(Sharples and Sharples, 2010)

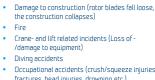
2006)

27%

8%

7%

5% 3%


37%

23%

(Nitschke et al., 2006)

Technology for a better society

() SINTEF

HSE - more frequent incidents and accidents?

- Diving accidents Occupational accidents (crush/squeeze injuries, fractures, head injuries, drowning etc.) "Just bare luck that more serious accidents do not happen"

•

208

- Corrosion

- Cable rupture/cable displacement

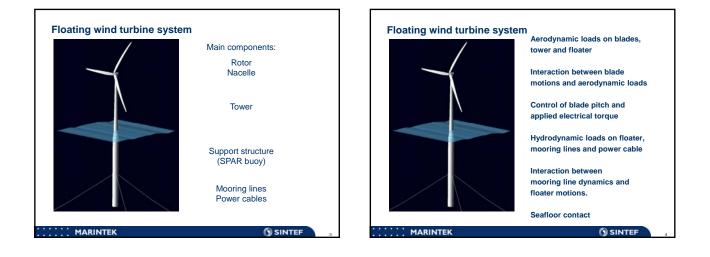
Suggested actions

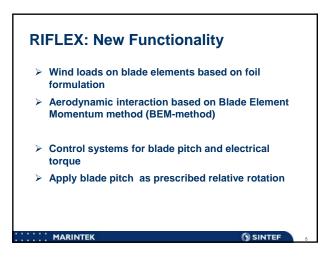
•

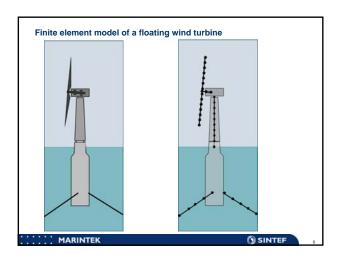
•

() SINTEF

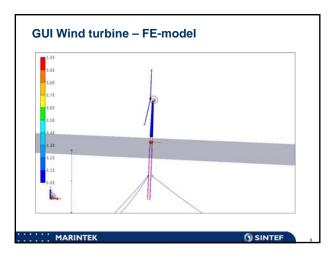
Thank you for your attention-There is need for regulations that ensure the Norwegian interests and traditions within HSE when working on the Norwegian Continental Shelf and internationally. The responsibility for regulations, inspections and audits within HSE should be clear and coordinated THE Ine responsibility for regulations, inspections and audits within HSE should be clear and coordinated Appropriate inspections and audits should be conducted The phases in offshore wind energy production forms should be regulated to ensure that HSE is attended to at an early stage. There is a need for HSE requirements in the design phase to ensure sufficient attention to ergonomic considerations in work areas. This may require an international standard or guideline as most concepts are 'off the shelf' from international industry. Cooperation between the relevant authorities in different countries is necessary. It is suggested to establish a pilot offshore wind park for research, testing and learning All experience (within operation, maintenance, reliability and HSE) from an early stage of the development should be collected. Databasesshould be established. Contribution to and use of data from such databases should be open to all actors and the authorities. Emergency preparedness plans and training sessions should be established We wish to thank the Petroleum Safety Authority in Norway this assignment. • () SINTEF Technology for a better society Technology for a better society

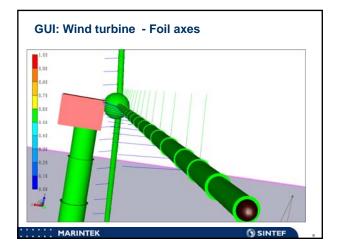

E) Installation & sub-structures

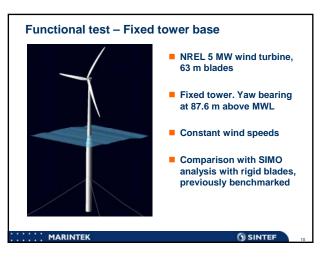

Coupled analysis of floating wind turbines, Elizabeth Passano, MARINTEK

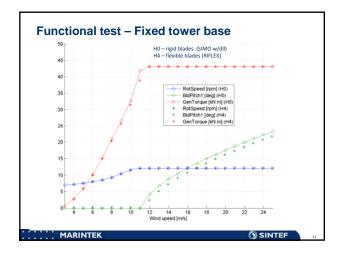

The effects of breaking wave-induced currents, PhD stud Sung-Jin Choi, Uni of Stavanger

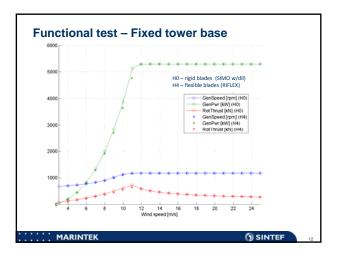

Effects of Foundation Modeling Methodology on the Dynamic Response of Offshore Wind Turbine Support, PhD stud Eric van Buren, NTNU

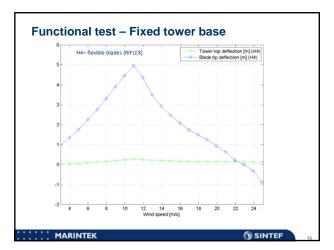


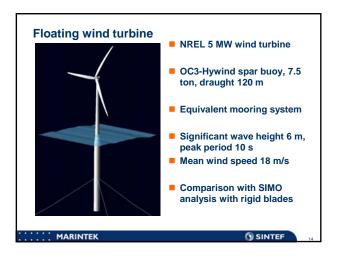


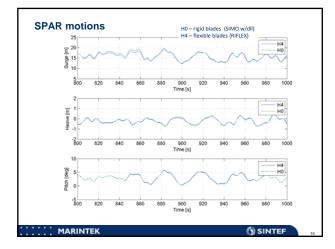


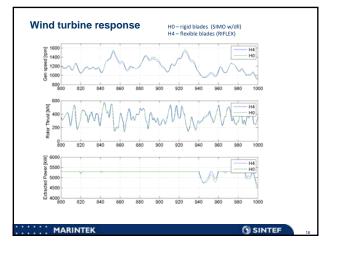


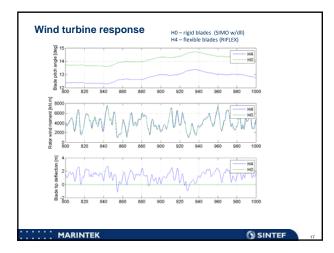


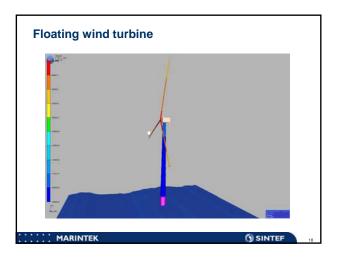










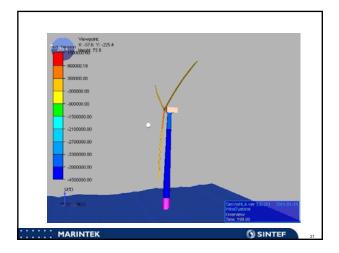


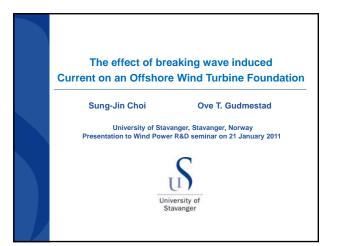
Conclusions

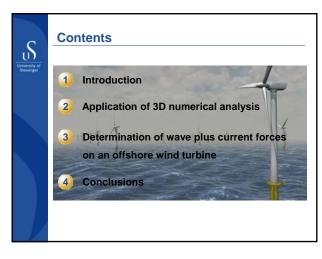
- A tool for coupled analysis of floating wind turbines has been developed
 - Nonlinear finite element method
 - Stochastic waves and wind
 - Interaction between mooring dynamics and tower motions
 - Interaction between blade dynamics and aerodynamic loads
 Aerodynamic loads based on the blade element momentum
 - method

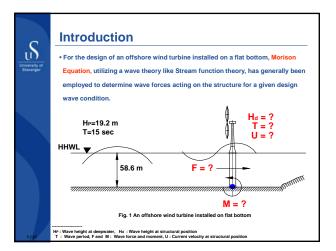
Graphical User Interface to aid modeling and analysis

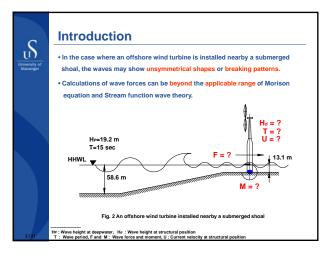
SINTEF

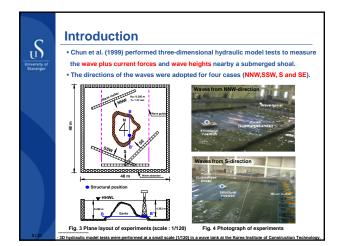

MARINTEK

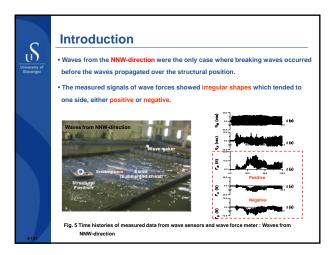

Planned work

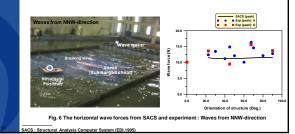

- Publish benchmarking of analysis tool and case study
- Ease modeling of blade twist
- 3D wind field
- Comparison with full scale measurements (Hywind)
- Continued development of GUI

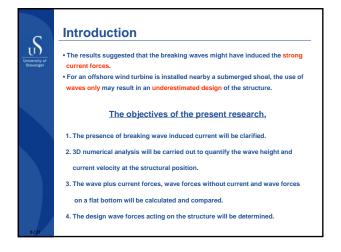

MARINTEK

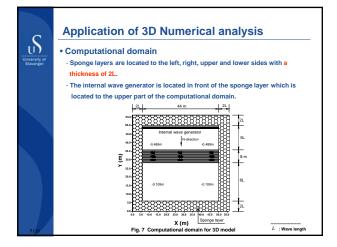

SINTEF

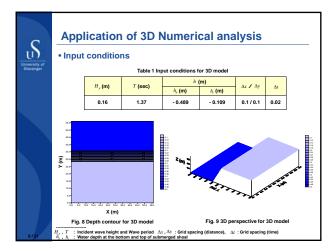


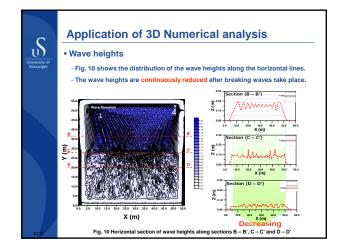


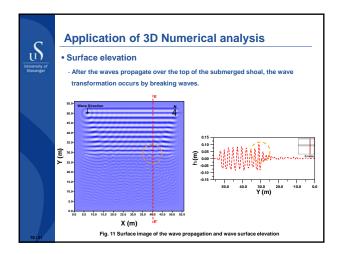


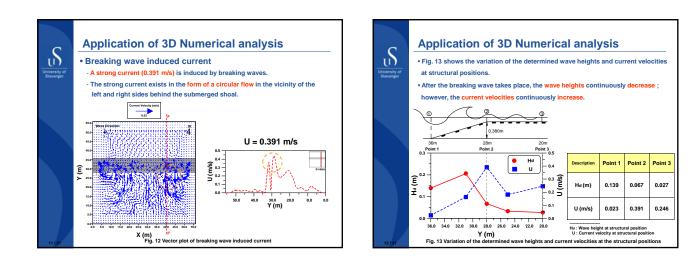


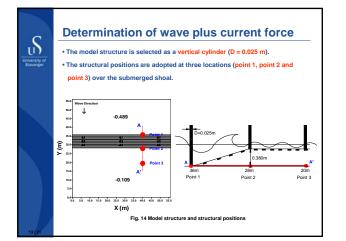

Introduction

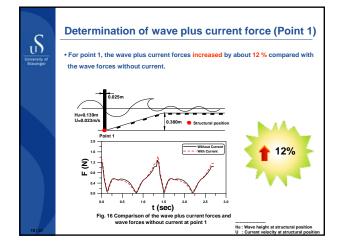

S

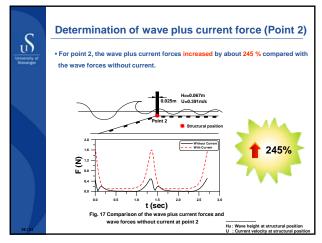

 In spite of that the wave heights nearby (on lee side of) the submerged shoal appeared to be small compared with the wave heights on a flat bottom, the measured wave forces rather exceeded the wave forces on a flat bottom which were calculated by SACS.

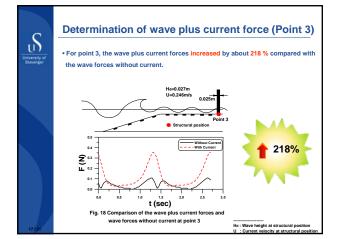


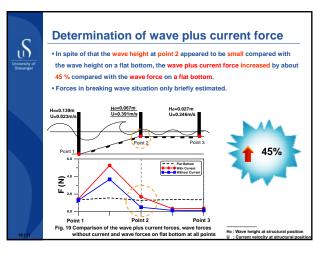






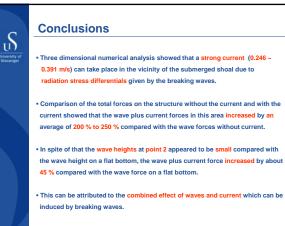






C	Determination	n of wave p	olus curre	nt force
U	Input conditions			
University of Stavanger	Hd=0.139m U=0.023m/s	Hd=0.067m U=0.391m/s	Hd=0.027m U=0.246m/s	
		s for calculating wave pl	us current forces on t	he model structure
	Table 2 Input condition	s for calculating wave p		
		Point 1	Point 2	Point 3
	Ha (m)	0.139	0.067	0.027
	ha (m)	- 0.489	- 0.109	- 0.109
	T (sec)	1.37	1.37	1.37
	U (m/s)	0.023	0.391	0.246
	D (m)	0.025	0.025	0.025
	CD / CM	1.2/2.0	1.2/2.0	1.2/2.0
14/21	Hd : Wave height at structural positio U : Current velocity at structural pos			

Uncersity of Statesigner


Determination of design wave force

 The results show that the wave plus current forces greatly increased compared with the wave forces without current. Moreover, the wave plus current forces rather exceeded the wave forces on a flat bottom.

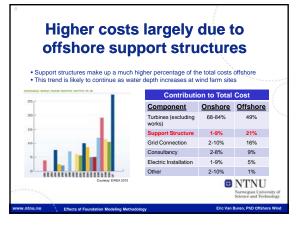
 For the determination of the design wave forces on the structure which is installed in the vicinity of the submerged shoal, the maximum wave forces have to be selected after comparison of the wave plus current forces, wave forces without current and wave forces on a flat bottom.

Table 3 Determined design wave forces on the model structures

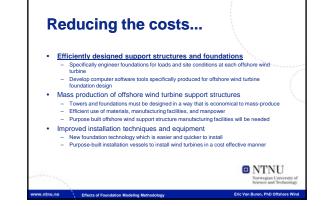
Description	Point 1		Point 2		Point 3	
Description	F (N)	M (N-m)	F (N)	M (N-m)	F (N)	M (N-m)
Wave forces and moment on flat bottom	1.31	0.46	1.16	0.41	<u>1.29</u>	0.48
Wave forces and moments without current	1.28	0.45	0.49	0.05	0.11	0.01
Wave plus current forces and moments	<u>1.43</u>	0.50	<u>1.69</u>	0.16	0.35	0.02

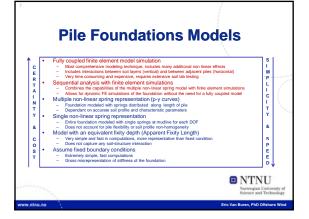


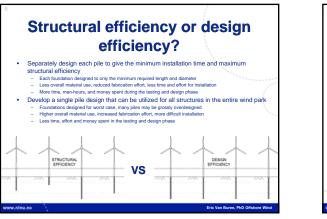
Conclusions

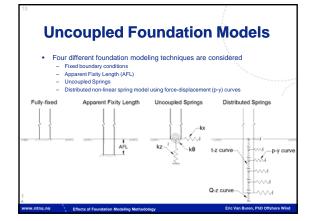

S

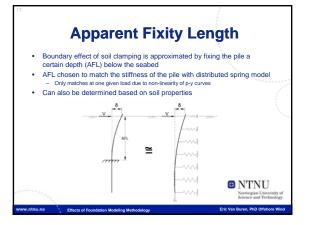
 For an offshore wind turbine installed on the lee side of a submerged shoal, the use of waves only (i.e., without current velocity) could result in the underestimated design of the structure.

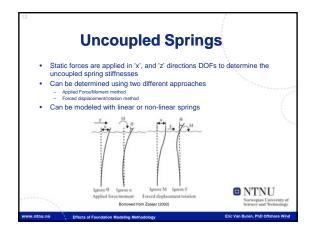

 For the determination of the design wave forces on the structure which is installed on the lee side of the submerged shoal, the maximum wave forces have to be selected after comparison of the wave plus current forces, wave forces without current and wave forces on a flat bottom.

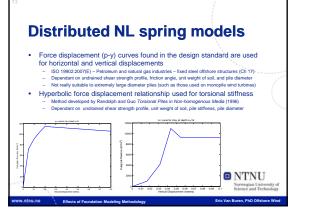


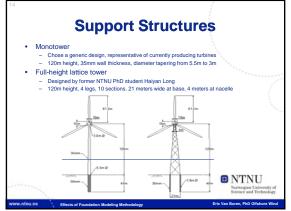


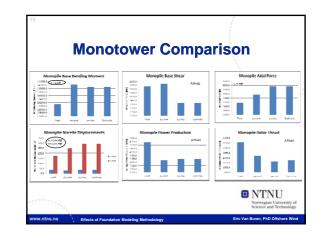


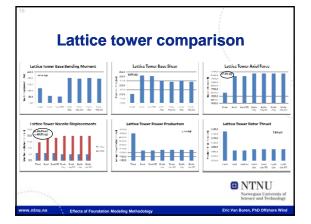


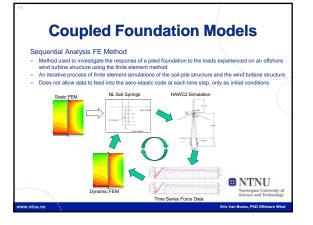


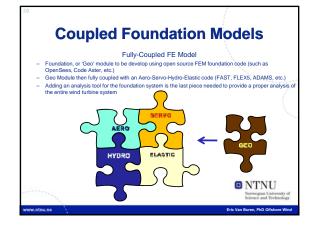


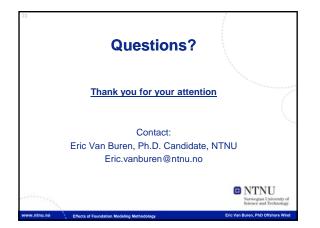


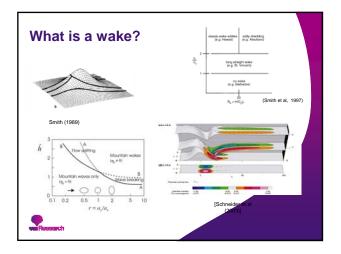


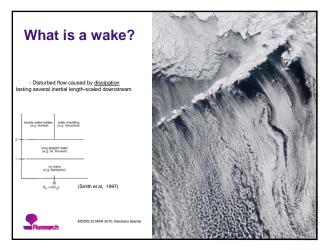


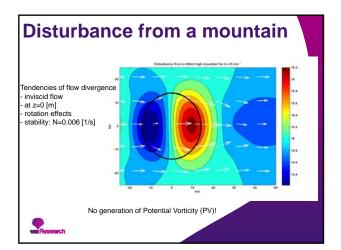


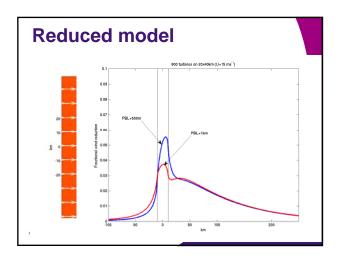


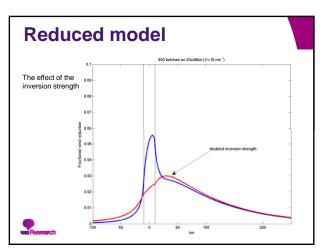


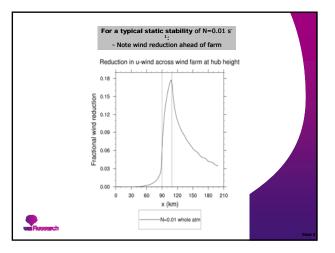


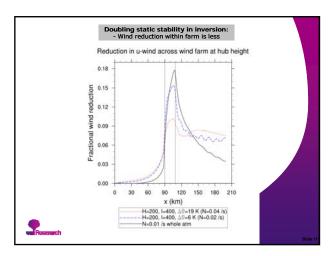

F) Wind farm modelling

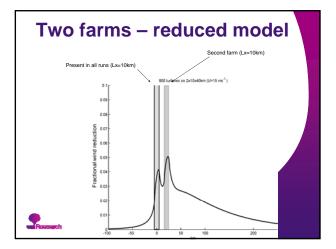

Wakes in between wind parks, Idar Barstad, Uni Research Wake models compared with measurements, Jennifer van Rij, IFE Wind and wake modelling using CFD, Jens A Melheim, CMR GexCon A model study of wind turbine interference, Prof Per Åge Krogstad, NTNU

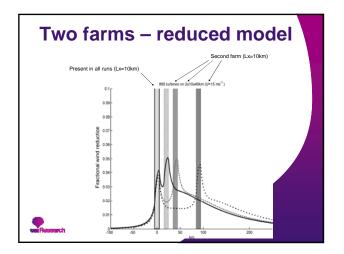


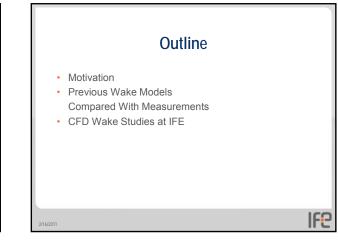


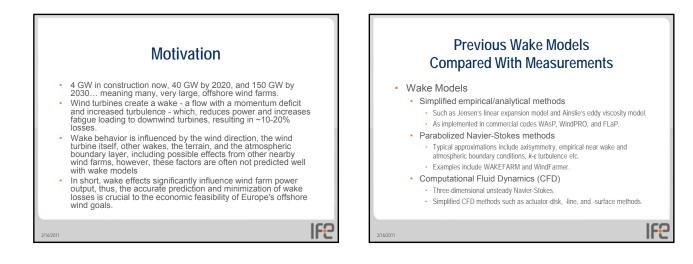


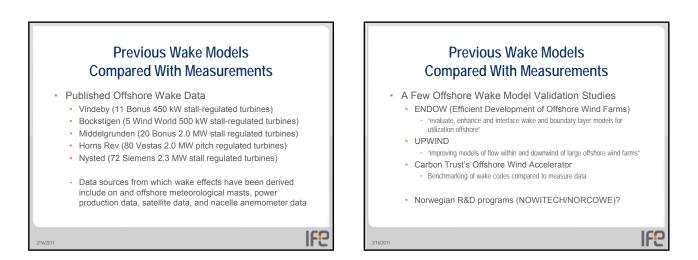

 θ increases with As air lifted over This creates colo 	ressure gradier height under typ farm, lower θ a	nts by wind farm: bical stable conditions ir brought up from below nd thus high pressure anomaly below nd.
Typical θ-profile over sea:		
theta	side view	
top view		$H \begin{bmatrix} \uparrow & \uparrow \uparrow \\ \uparrow & \uparrow \uparrow \\ \uparrow & \downarrow \end{bmatrix} $
wei Revenarch		Slide 3

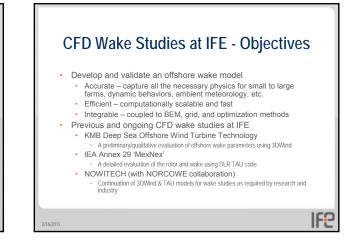


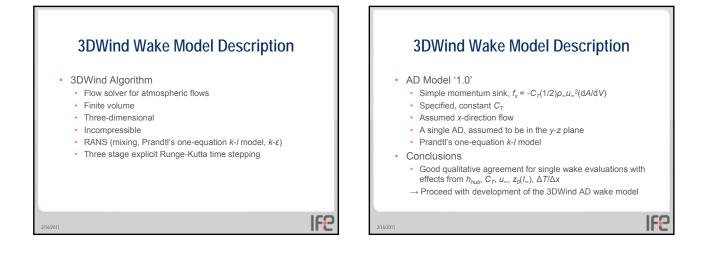


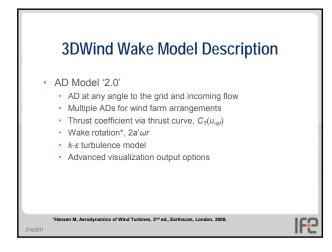


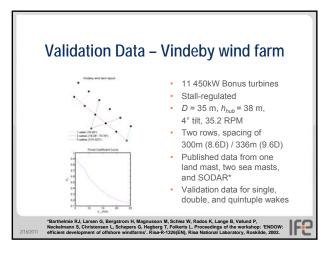


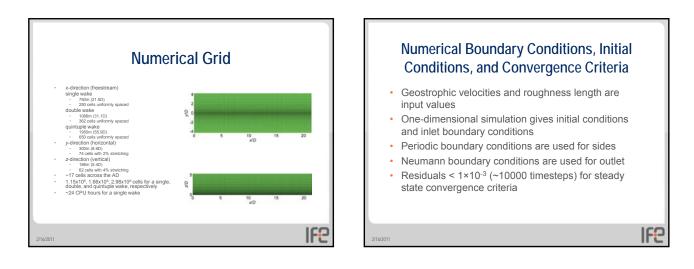


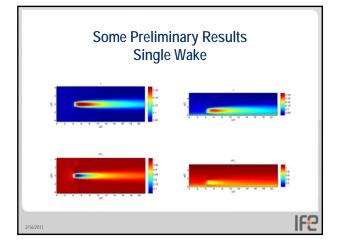


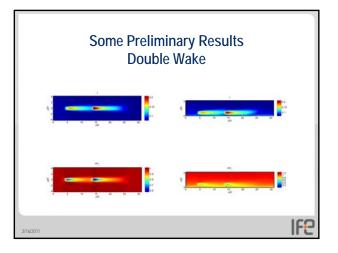


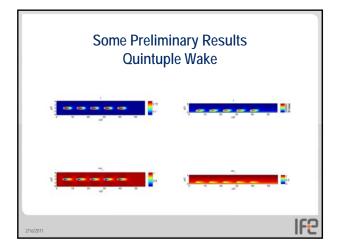

Previous Wake Models Compared With Measurements

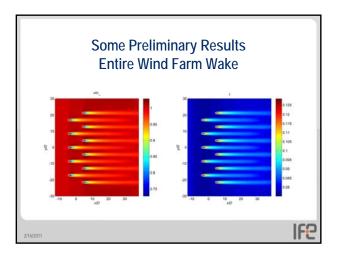

- A few general findings from previous studies • For small wind farms, most models, even simple empirical models, perform reasonably well.
 - perform reasonably well. Large measurement uncertainties have made model comparisons and validation difficult, and a clearly superior wake modeling method has not been not evident.
 - For large multi-row wind farms, wake models are not sufficiently accurate, errors are propagated and wake losses are often under predicted.
 - The capability of wake models to predict atmospheric and sea stability effects, and losses due to nearby farms appears to be lacking.
- Increased spacing clearly decreases wake losses, but wake models must be improved for optimize wind farm layouts.


IF₂









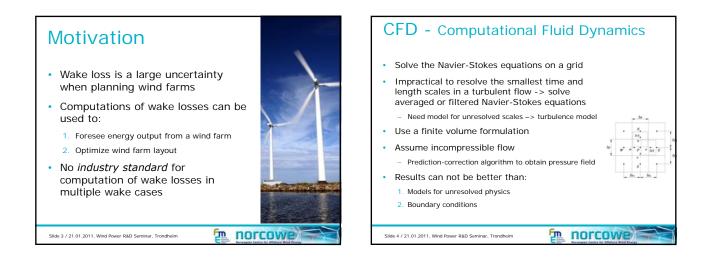
Conclusions & Future Plans

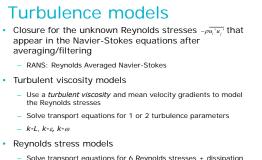
The studies are ongoing, so no *final* conclusions... The improvements to the 3DWind AD model were helpful • Average velocity profile error ~3% \rightarrow -2% • Average equivalent $k_{wase} = 0.09 \rightarrow 0.08$ The improved AD model both qualitatively and quantitatively predicts wake development and decay compared to experimental data and empirical models. Although the 3DWind wake model performs reasonably well for smaller studies (~1x10° cells), it may not be ideal for larger evaluations.... AD models in TAU CFD will be investigated next. Detailed evaluation of the rotor and wake using DLR TAU code (3D, unsteady, using advanced gridding, transition and turbulence models, with parallel computing access up to 5632 processors). Possible continuation studies may include AL or AS models and/or coupling to a BEM code (FLEX5) for individual wakes.

IF₂

230

<section-header><section-header><section-header><section-header><image>


norcowe


CMR GexCon

Wind Power R&D seminar, 20-21 January 2011, Trondheim

Slide 1 / 21.01.2011, Wind Power R&D Seminar, Trondheim

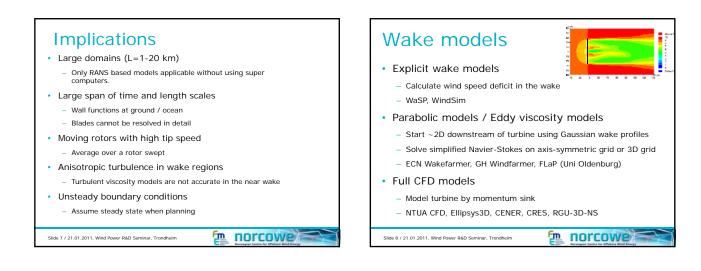
– Solve transport equations for 6 Reynolds stresses + dissipation rate of turbulent kinetic energy (ϵ)

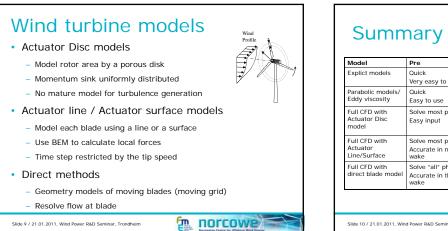
Large eddy models

Solve filtered N-S eq. using a grid size dependent filter

Side 5 / 21.01.2011. Wind Power R&D Seminar, Trondheim

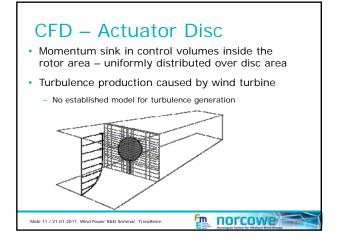
Large range of time and length scales
 Moving rotors and high tip speeds
 Anisotropic turbulence in wake regions
 Unsteady boundary conditions
 Impossible to resolve all physics

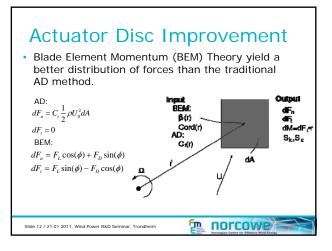

Characteristics of

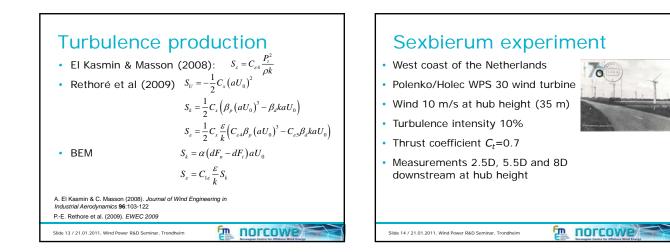

Large domains (L=1-20 km)

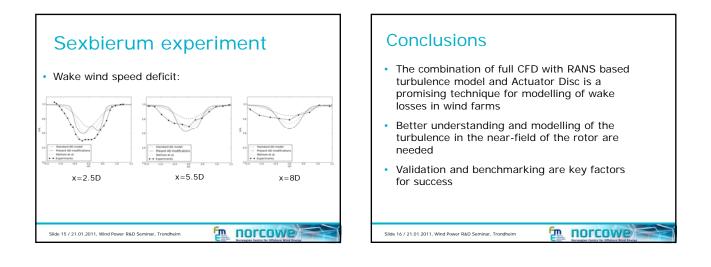
Slide 6 / 21.01.2011, Wind Power R&D Seminar, Trondheim

wind farms

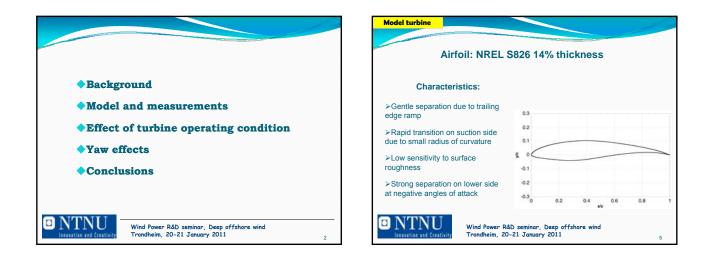

norcowe

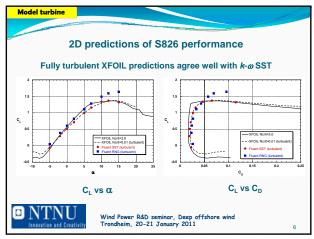


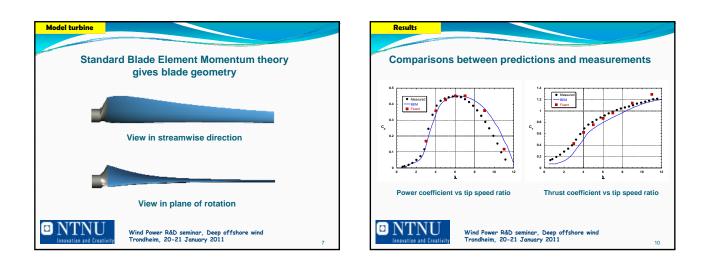


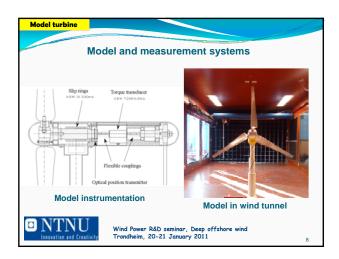


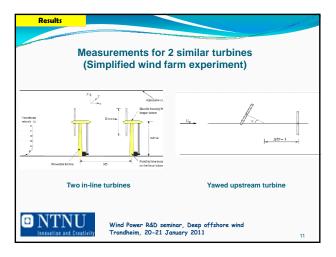
Model	Pre	Cons	Multiple wakes?
Explict models	Quick Very easy to use	Need to tune parameters No physics solved	No
Parabolic models/ Eddy viscosity	Quick Easy to use	Terrain (2D models) Multiple wakes	Tuning needed
Full CFD with Actuator Disc model	Solve most physics Easy input	Slow Turbulence production Not accurate in near wake	Yes
Full CFD with Actuator Line/Surface	Solve most physics Accurate in near wake	Very slow Requires detailed blade and airfoil data	Maybe
Full CFD with direct blade model	Solve "all" physics Accurate in the near wake	Extremely slow Much work to setup	No

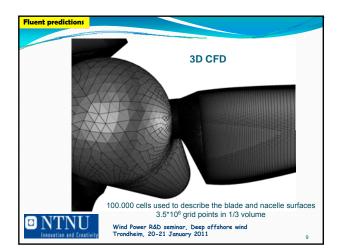


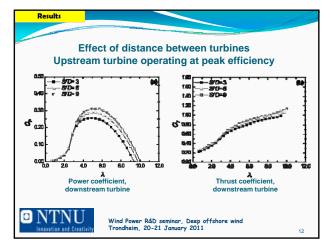


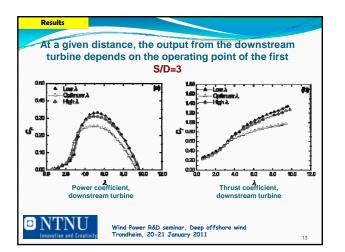


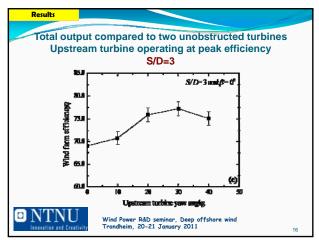


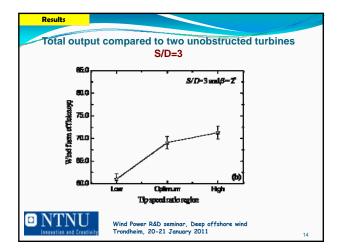


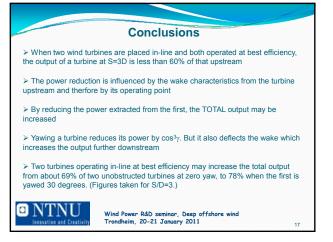


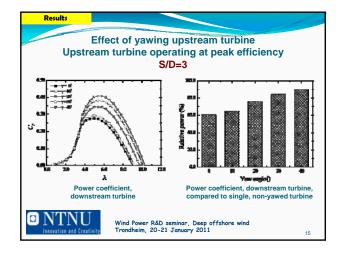


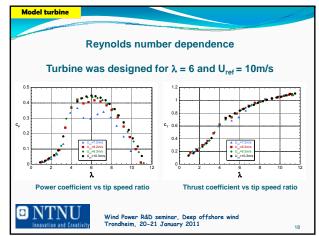


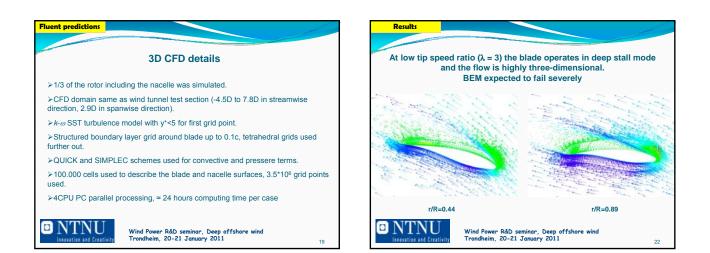


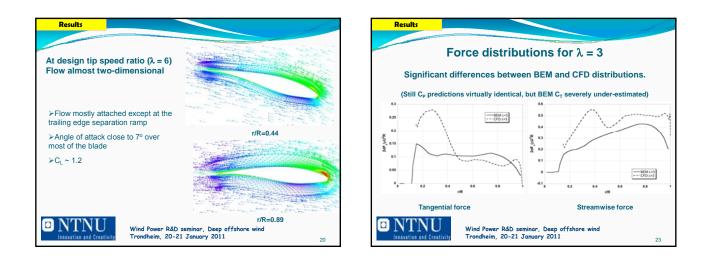


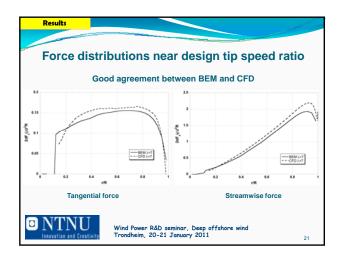










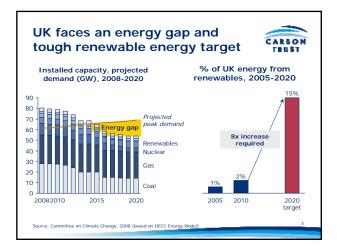


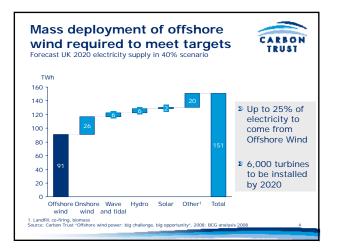
Closing session – Success stories from Offshore Wind Research, Development and Deployment

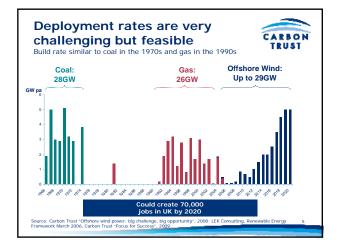
Carbon Trust's Offshore Wind Accelerator, Phil de Villiers, Carbon Trust

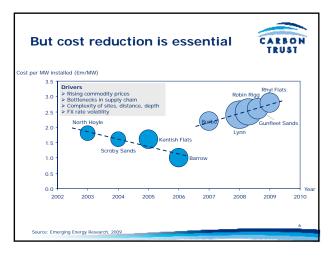
From Scanwind to GE – becoming a global player anchored in Mid-Norway, Martin Degen, GE

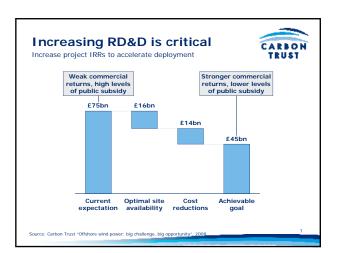
HyWind – A success story – A catalyst with Access as an example, Sjur Bratland, Statoil

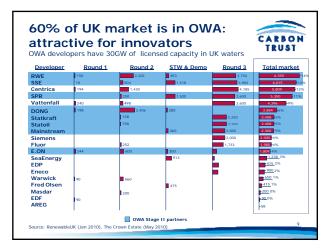

Offshore wind farm forecasting and energy production, Jostein Mælan, StormGeo

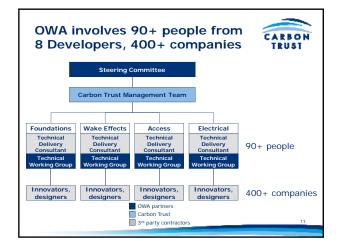

Using research experiences in marine technology for advancing offshore wind technology, Prof. Torgeir Moan, NTNU

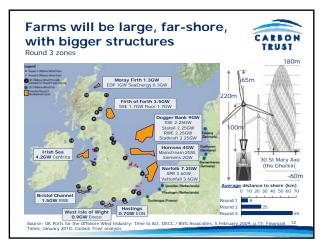

Research gives results, Espen B Christophersen, Research Council of Norway

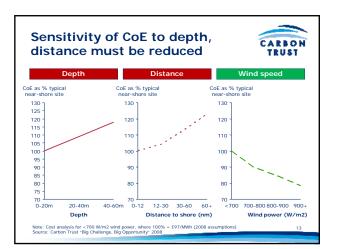


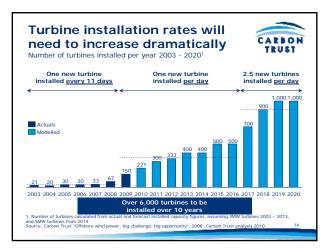


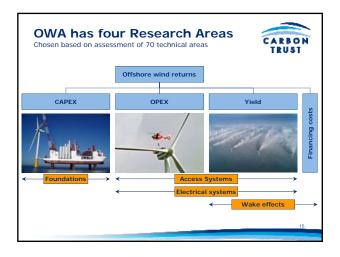


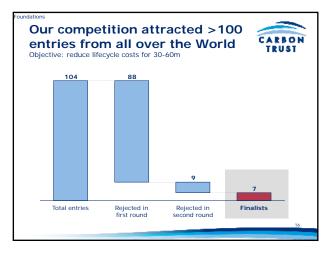


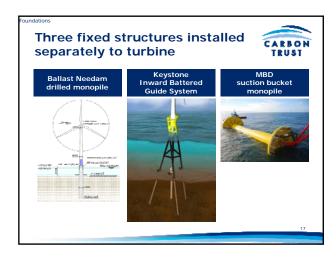


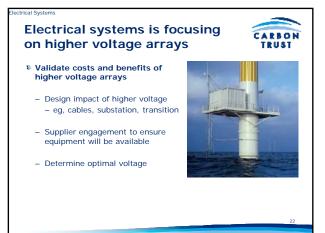


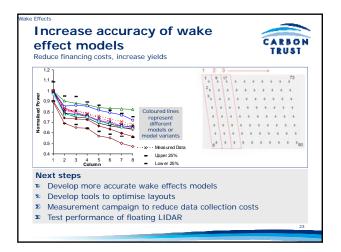


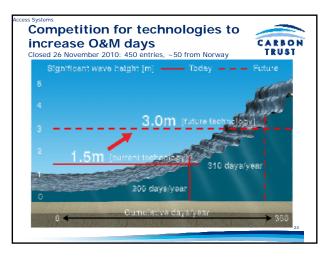




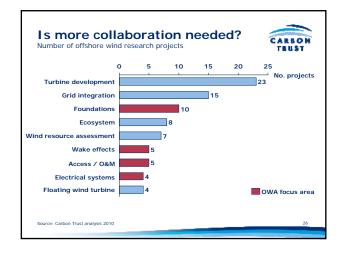




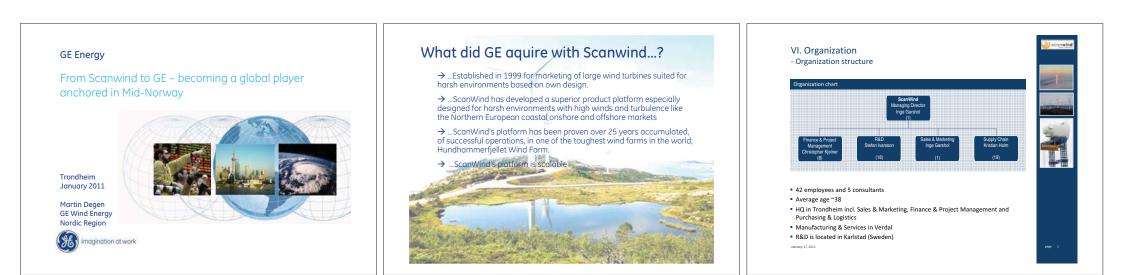




Conclusions


CARBON

We believe OWA is a successful model for collaboration


- Cost-effective approach for performing R&D

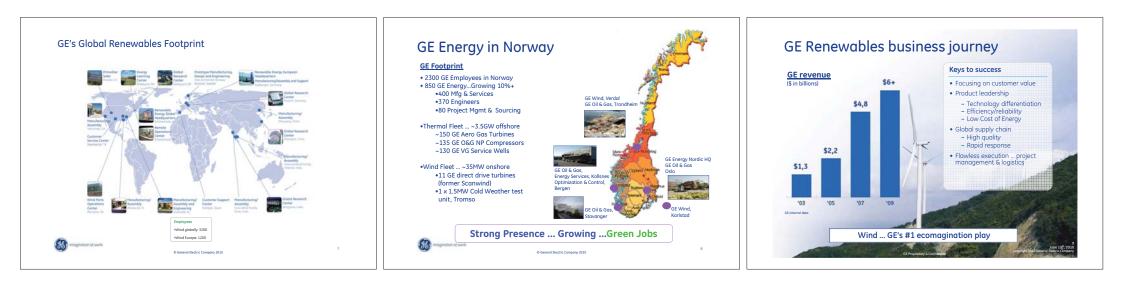
 Each members' annual contribution generates 12x research
- Efficient forum for members to learn from each other
- Successful for screening the market for new technologies
- Promotes technology transfer from other industries
 Allowing new companies to enter the market
- ℤ Very targeted R&D: Keeps focused on commercial returns

...but we are still learning and would welcome further collaboration with research organisations and innovators

Global Research

through technology

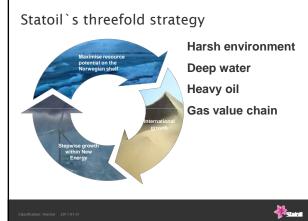
GE Energy

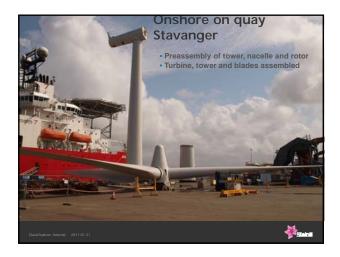

\$37B / 24%

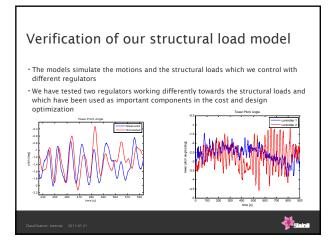
Began in Schenectady, New York in 1900 Founded with the focus to improve businesses

c. 1900

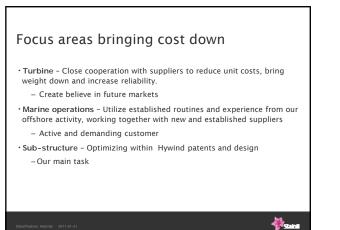
Today: One of the world's most diverse industrial labs and the cornerstone of GE's commitment to technology

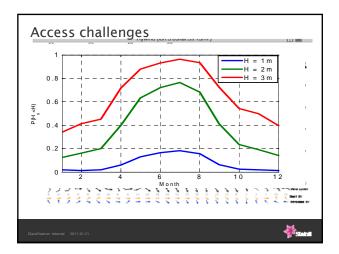


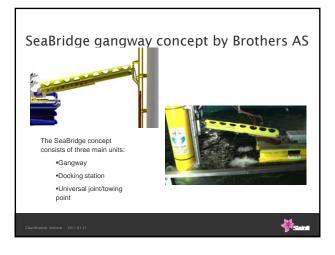


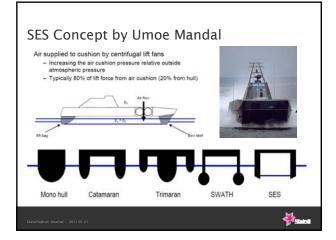

One year of operation – The Hywind concept is qualified

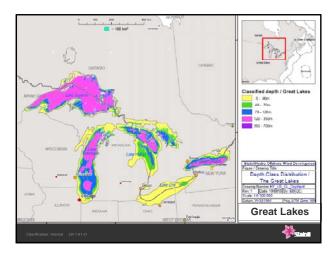
- Production is as good as or better than other 2.3 MW Siemens wind power turbines
- -Loads factors above 40 %
- Wind turbine has preformed well. No drawbacks from being installed on a floater
- -Less alarms than anticipated
 •Access and maintenance equal to other
- offshore wind installations
- All technical systems are working well

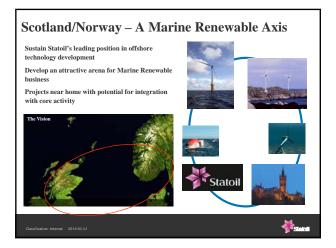


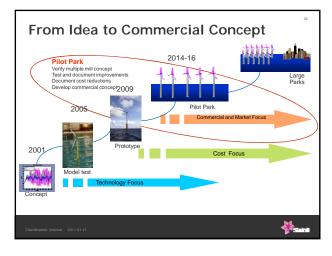

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></table-row><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>

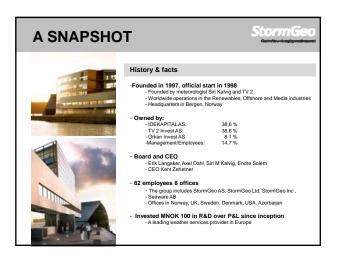


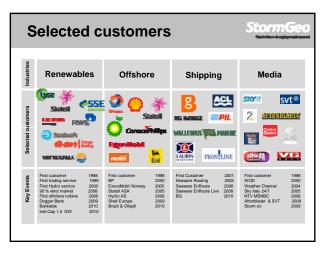


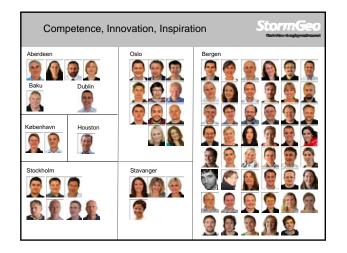


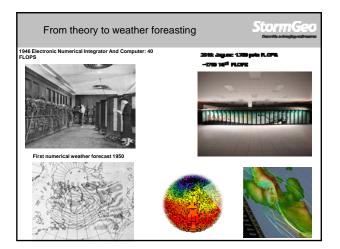


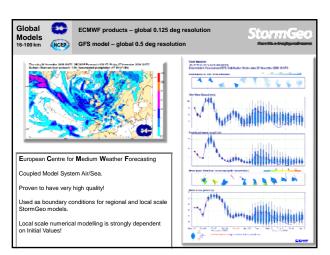


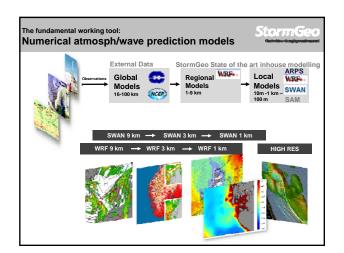


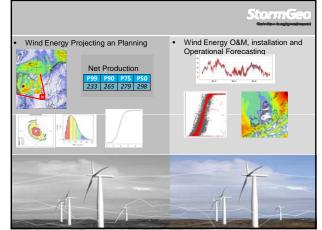


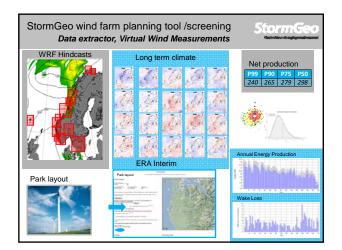


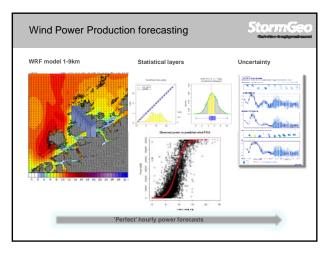


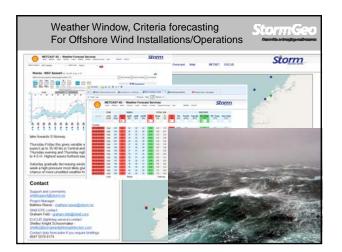


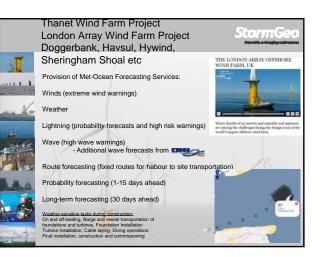


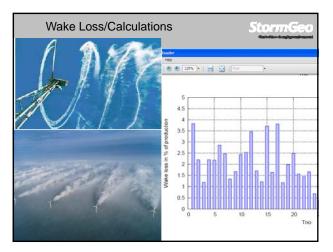


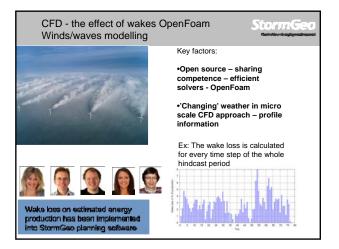


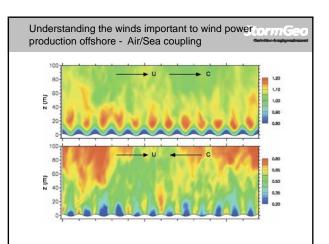


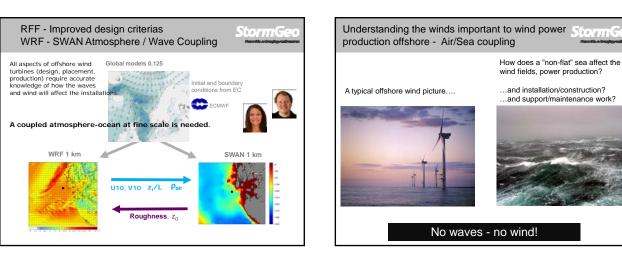




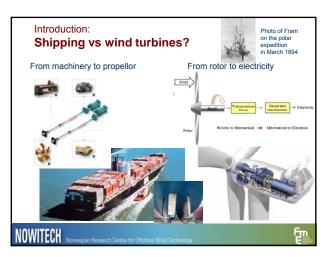


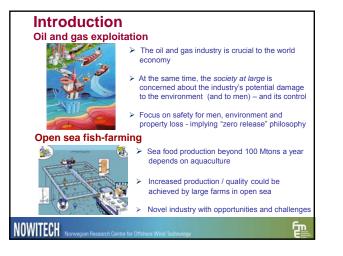


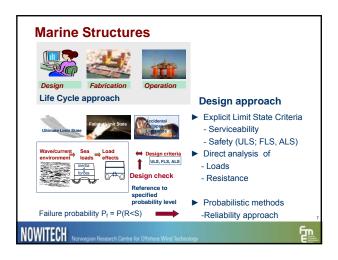


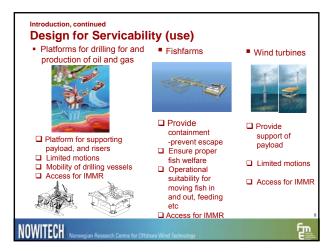


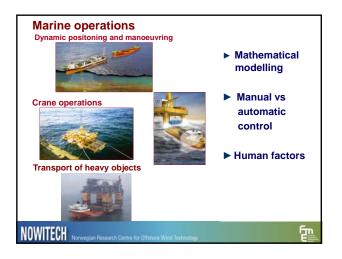


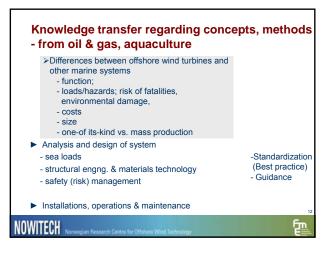


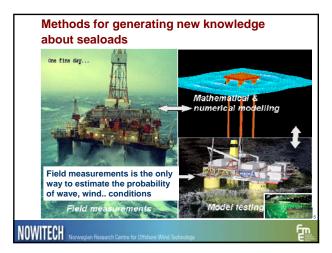


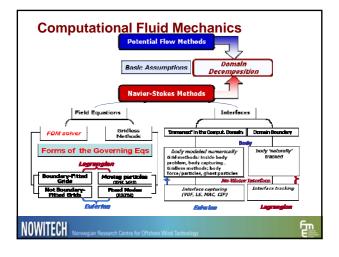


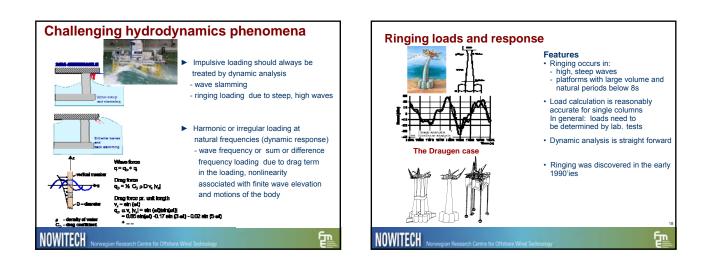


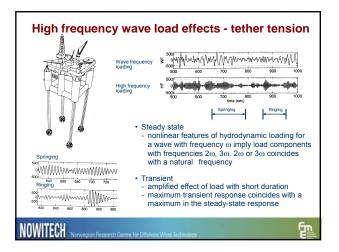


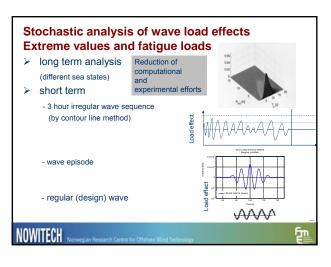


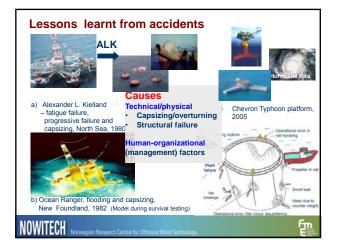


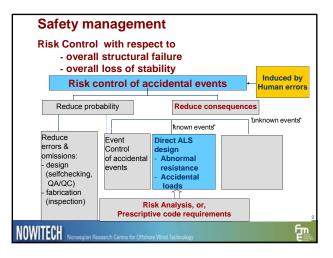


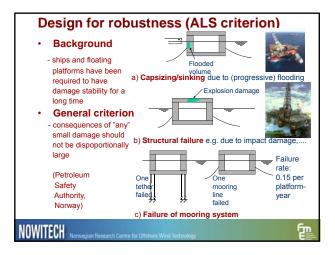


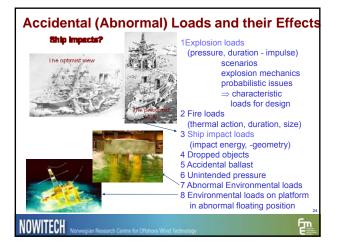


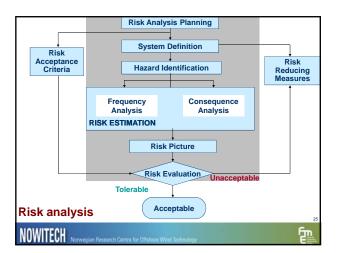


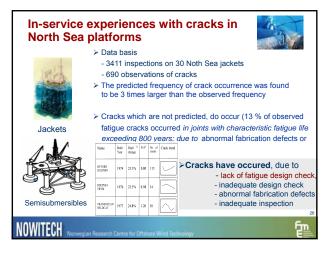


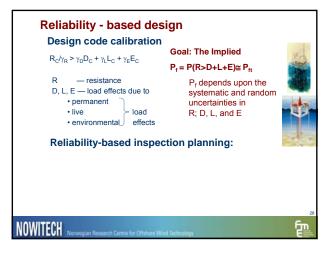


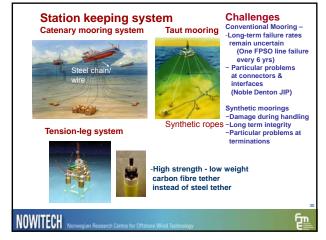


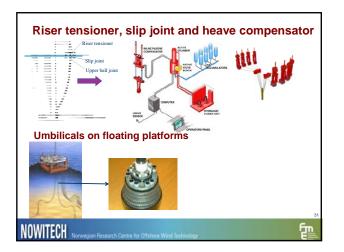


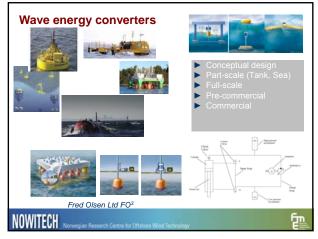


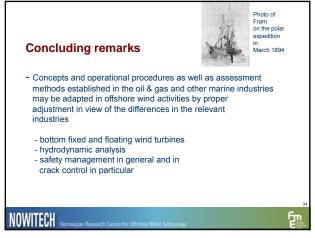


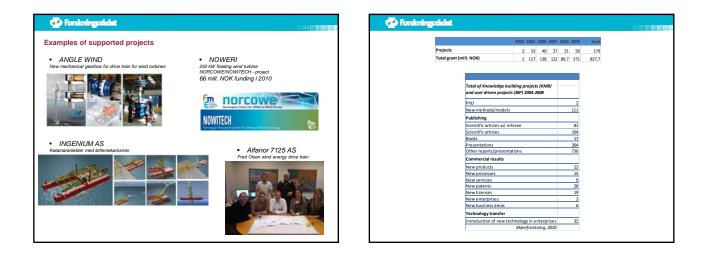


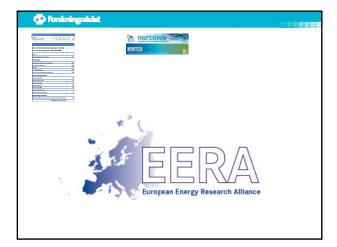


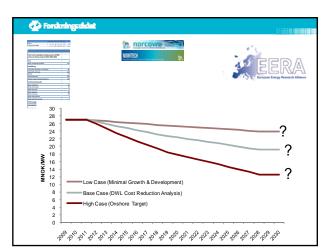



18 mg	Struct. type	Type of joint	Fatigue Design Factor	Residual fatigue life	Ultimate reserve strength	Inspection (and repair) Method
	Jacket	Tubular joint	2-10	Some- Significant	Normally	NDE ²⁾ Underwater
	Semi- Subm.	Plated brace Plated colp.	1-3 1-3	Some Some	By ALS ⁴⁾ Limited	LBB ³⁾ NDE LBB NDE
Law.	TLP	Tether Plated column	10 1-3	Small Some	By ALS Limited	IM ⁵⁾ LBB NDE
- STATE	Ship	Plated longt.	1-3	Significant	None	Close Visual
2) NDE - No 3) LBB - Lea 4) ALS - Acc	n Destructive ak before brea idental Collap	Examination I ak monitoring ose Limit State	Method	e multiplied with t Diver inspecti		sign fatigue life









🔹 🐼 Forskulugs	rhdat			
	TECHNOLOGY RAD POCI PUCT LABCATORY USER DRIVEN RAD INSTITUTIONS	DEVELOPMENT UP-SCALED PILOTS INNOUASJON NORGE	DEMONSTRATION PULL SCALE END USER PO USER PO DO	\$ MARKET
CONCEPT DESIGN PROJECT PLAN	🚺 Forsknin	gsrådet		

Technology for a better society www.sintef.no