Optimal offshore grid developments in the North Sea towards 2030

Daniel Huertas Hernando

Daniel.Huertas.Hernando@sintef.no www.sintef.no/energy

Deep Wind 2013 – Strategic Outlook Session 25th January 2013

NOWITECH Norwegian Research Centre for Offshore Wind Technology

Norwegian Research Centre for Offshore Wind Technology

What is the **<u>Strategy</u>** to reach this Vision?

How to define a **robust development path** to deploy our **Strategy**?

Strategy:

"An interconnected offshore grid in the North Sea in 2030"

- Can be highly beneficial from an economic perspective
- Contributes to reaching the European 20-20-20 targets and beyond
- Will increase the security of supply
- □ Is a step towards an integrated electricity market
- Helps to smooth fluctuations and integrate RES
- Connects northern storage capacities to the power system

(Conclusions of IEE-EU project OffshoreGrid)

IEE OffshoreGrid

- Techno-economic study
- Cost-benefit analysis of different design options
- First in-depth analysis of how to build a cost-efficient grid in the North and Baltic Seas
- Coordinator 3E, 8 partners, consultancy & applied research
- SINTEF : Harald Svendsen, Leif Warland, Magnus Korpås, DHH

Sensitivity Analysis & Robustness

Main Aspects considered

- Potential for large scale offshore wind deployment.
- Potential for flexible generation increased hydro power potential in Norway.
- Analysis of onshore grid reinforcement strategies for offshore grid topologies
- ✓ **SINTEF**: Hossein Farahmand, Stefan Jaehnert, DHH

European Interconnected Network (2030)

Tool: Power System Simulation Tool (PSST) – DC Power Flow

Detail model of Norway <

Offshore Grid

Detail model of the UK <-

Detail model of ENTSO-E

8

Wind Power Scenarios in Northern EU

Country		202	20		2030				
	Total installed Capacity (GW)		Offshore wind power (GW)		Total installed Capacity (GW)		Offshore wind power (GW)		
	Base	High	Base	High	Base	High	Base	High	
Belgium	4.26	4.66	2.16	2.16	6.72	7.01	3.96	3.96	
Germany	49.8	55	8.81	13	78.01	92.01	24.06	32.38	
Denmark	6.51	7.21	2.81	3.21	9.48	11.19	4.61	5.81	
Estonia	0	0	0	0	1.7	1.7	1.7	1.7	
Finland	2.35	2.95	0.85	1.45	5.58	7.34	3.61	5.16	
France	22.93	23.94	3.94	3.94	30.65	34.67	5.65	7.04	
UK	30.06	37.68	16.3 1	22.7 8	54.29	71.77	36.2	51.77	
Ireland	6.37	7.48	2.12	2.38	8.81	10.66	3.22	4.48	
Lithuania	0	0	0	0	1	1	1	1	
Latvia	0	0	0	0	1.10	1.10	1.10	1.10	
Netherlan ds	8.8	10.3	5.3	6.80	17.40	22.38	12.79	17.29	
Norway	3.6	5.14	0.42	1.02	9.49	12.27	5.31	7.64	
Poland	10.5	12.5	0.5	0.5	18.46	19.84	5.30	5.30	
Sweden	9.08	11.13	3.08	3.13	14.76	16.94	6.87	8.22	

154.26 177.99 46.3 60.37 **257.45 309.88 115.38 152.85**

Offshore wind farms in 2020 (red) and 2030 (red+black)

Technical University of Denmark

www.twenties-project.eu

Scenario Analysis of Hydro Power Potential (D16.2 & CEDREN SINTEF Report <u>http://www.cedren.no</u>)

Plant	2020 (MW)	2030 (MW)
Pump Storage Plant Tonstad	1400	1400
Pump Storage Plant Holen	700	1000
Pump Storage Plant Kvilldal	1400	2400
Power Plant Jøsenfjord	1400	2400
Pump Storage Plant Tinnsjø	1000	2000
Pump Storage Plant Tinnsjø	1400	2400
Power Plant Lysebotn	400	1800
Power Plant Mauranger	-	400
Power Plant Oksla	700	700
Pump Storage Plant Tysso	700	1000
Power Plant Sy-Sima	700	1000
Power Plant Aurland	700	700
Power Plant Tyin	700	1000
Amount of new power capacity	11200	18200

 E. Solvang, A. Harby, Å. Killingtveit, "Increasing balance power capacity in Norwegian hydroelectric power stations (A preliminary study of specific cases in Southern Norway)," SINTEF Energy Research, CEDREN Project, Project No.
12X757, 2012 www.twenties-project.eu

Grid Implications of Hydro Power Flexibility in Norway

- Grid reinforcement in Norway according to Statnett grid development plans
- Special attention is paid to the corridor where the hydro production capacity expansion is proposed (highlighted in yellow)

Offshore Grid Alternatives

Case A

Case B

Case C

Detail model of the UK Reinforced Grid in Norway allows use of Hydro flexibility potential Isle of Man reland United Kingdom Netherlands Germany Belgium Detail model of UCTE: Czech Republic Luxembourg Present level of internal Google eart Constrains in DE and NL 727798° ele Eye alt 1899.81 km

Present level of internal Constrains in DE and NL + TYNDP 2012 + German Grid Plan www.twenties-project.eu

14

oogle ea

No-Internal Constraints

Operating costs

							Strack
Onshore Grid Cons	tra th	ints in the ENTSO-E and UK		Offshore gric Cases		Cost (Milliard EUR/a)	la la
				Case A		92.8462	
1.N) C	onstraint		Case B		92.7498	
				Case C		92.7665	
				Case A		95.5779	
2. Inter	na	l Constrain <mark>:</mark>		Case B		95.5273	4
				Case C		95.517	
,	/			Case A		92.9928	
3.Internal Constraint with Expansion				Case B	2	92.9288	0
				Case C		92.9274	

www.twenties-project.eu

The Impact of Internal Onshore Constraint

Onshore grid constraints *inland* strongly influence the optimal use of wind and hydro resources; Limitations to transfer the power inland hence increase the operating cost significantly.

North Sea Power Wheel Mr. G.W. Adamowitsch

This work has performed a detailed techno-economic study to quantified this effect.

Pumping Strategies

Specific Case (Tonstad & NorGer HVDC cable)

Tonstad Reservoir in Norway

Specific Case (Tonstad & NorGer HVDC cable)

- The reservoir is drained very fast during winter time until hour 3000
- From hour 3000 to 6000 there is a filling season with high natural inflow to reservoir
- During the above period, small fluctuations have been observed
- The small fluctuations are assumed to be the effect of wind production variability

Summary

Work done in IEE-EU OffshoreGrid, FP7- TWENTIES, FME NOWITECH have performed detailed techno-economic studies of:

In-depth analysis of how to build a <u>cost-efficient grid</u> in the North and Baltic Seas

Identification of <u>required transmission</u> capacity between the Nordic region and Northern Continental Europe for <u>optimal</u> use of <u>hydro power</u> and <u>wind power</u> generation.

Sensitivity analysis on effect of onshore grid constrains

Main conclusions

- Onshore grid constraints strongly influence the flows across a meshed offshore grid, therefore affecting the optimal use of wind and hydro
- Long term strategies for the development of offshore grids and onshore grid expansion must be done in a coordinated way to ensure optimal developments.
- The analysis demonstrates the correlation between the pumping strategies in the Norwegian system and the onshore and offshore wind variations around the North Sea

Thank You !!

BACK-UP SLIDES

www.twenties-project.eu

How to define a <u>robust development path</u> to reach this Vision?

Research can contribute to this task by:

- Considering different Scenarios including different configurations of offshore grids in the North Sea.
- Perfoming sensitivity analysis of the considered configuration(s) on different important key parameter & assumptions

The main focus of a such analysis is to <u>gain knowledge</u> about the <u>key relationships</u> and driving forces so <u>better decisions</u> can be made <u>(today)</u>, about the best strategy to reach our **Vision**.

Grid Implication Studies: Northern Europe

Power System Simulation Tool (PSST) – DC Power Flow

Generation portfolio and demand:

The scenarios and data are consistent with Market Model

Grid Model

- ENTSO-E UCTE Study Model (winter 2008)
- British (National Grid-Seven Year Statement)
- Nordic and Eastern Europe data (SINTEF-NVE & TradeWind)

Modelling Development

- ✓ 5651 buses, 2410 generators, 9611 branches
- 2020, 2030 Scenarios

www.twenties-project.eu

Hydro modelling

Since there is a limited amount of water storage in hydro reservoirs, its long-term utilisation is essential to be optimised

- The water values reflect the expected future value of the other types of production that the hydro generators substitute
- The water values are imported from the market model (EMPS) and used as exogenous input to the next model (PSST)

Calculated Water Values For a Reservoir in Southern Norway

Inflow Scenarios in the Norwegian Power System 28

European Interconnected Network (2030)

PSST + Offshore Meshed Grid (IEE-EU OffshoreGrid Project)

North Sea Power Wheel Mr. G.W. Adamowitsch

www.twenties-project.eu

Main Results in a Nutshell – Total costs

- Hub connection saves €14 bn .
- Additional interconnections costs €5-8bn and bring benefits €bn 16-21
- The financial numbers speak clearly for an offshore grid.

Reservoir Trajectory in Norway in 2030

The simulated reservoir (black curve) follows the seasonal variation

Average Normal Hydrological Year

Comparing Tonstad Simulated Reservoir Trajectory

IC: Present Internal constraint

 ICE: Expanded transmission according to TYNDP2012+ German Grid Plan

NC: No internal constrains – NTC limited

High Wind Scenarios

Increase of WPP up to 63 GW

Reservoir Trajectory in Norway

The wind energy surplus is stored in the Norwegian hydro reservoir by pumping the water from low to high altitude reservoirs

Dry Year and High Wind Scenario

Wind energy is stored in the Norwegian reservoir helping the Norwegian power system to cover the load in depletion season and fill up the reservoir in the filling season

Exchange Variation (high and baseline wind-dry year)

www.twenties-project.eu

Material shown IEE-EU OffshoreGrid project (Leif and Harald) TWENTIES (Hossein Farahmand, Stefan Jaehnert)

NorNed	Nordlink	Cobra	BritNed	Skagerr ak	Storbælt	Konti- Skan	Kontek	Baltic
700	-	-	-	900	500	720	550	525
1400	700	700	1000	1600	500	720	600	600
SwePol	Fenno- Skan	Nemo	NorBrit		DK-DE	DE-NL	DE-BE	NL-BE
450	550	-	-		1400	4000	-	1400
450	1100	1000	1400		2400	6300	1600	2400

SEVENTH FRAMEWORK

EUROPEAN COMMISSION

High marginal transmission profit on corridors crossing the North and Baltic Sea in 2030 (due to price differences) => arbitrage / investment potential

Transmission Expansion - Investment algorithm

• Two-step methodology:

- 1. Detailed power market simulation
- 2. Investment decision based on outcome of power market simulation
- Impact of investments on electricity price is taken into account
- Investment based on marginal profit

4000 MW

2000 MW

0 MW

Transmission expansion

 Although marginal profits Main expansion only occurs around the North Sea

Increasing the capability of transmitting energy from renewable energy sources (Sweden, Scotland) to load centres (Southern Germany, Southern UK)

No expansion within the North Sea due to high investment

Electricity prices – before and after transmission expansion

Alignment of prices in the Nordic region, Great Britain and continental Europe

EUROPEAN COMMISSION

Generation portfolio / Mix

- Increase of WPP up to 191 GW
- Decommissioning of

nuclear / lignite power plants

Hydro

2010 scenario calibrated to generation mix reported by ENTSO-e Significant shift of generation sources up to 2030

Increased production variability due to balancing of WPP

The Grid Expansion in the German Power System

DE and NL + TYNDP 2012 + German Grid Plan

www.twenties-project.eu

The Grid Expansion in the British Power System

The UK+ TYNDP 2012

www.twenties-project.eu

