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Introduction

►Objective:
 Investigate the technological challengies related to the high-power 

generators for offshore wind turbines
 High-power: >6MW 
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Generators in operational offshore wind
farms (I)
►By the end of 2012, 1886 wind turbines installed in 57 offshore 

wind farms; total operational capacity of 5.45 GW.
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Figure 1: (a) Development of average rating per turbine. 
(b) Market share of drive trains.

DT: Direct drive Train; MGT: Multi-stage Geared drive Train; SGT: Single-stage Geared drive Train

(a) (b) 



Generators in operational offshore wind
farms (II)
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Figure 2: (a) Market share of different machine types 
DFIG: Doubly-Fed Induction Generator;  SCIG: Squirrel-Cage Induction Generator; 
PMSG: Permanent Magnet Synchronous Generator 

(b) Average power vs. machine types for 2008-2012.



Generator mass

► It is not clear how the structural mass evolves as the power 
grows.

►Estimation with scaling law gives much error.
►Structural design demands extensive knowledge on mechanical 

and structural analysis.
► In this paper

 The total mass: estimated by statistically investigation of the commercial 
design and curve fitting;

 Active mass: finite element analysis and optimization;
 Supporting mass: Total mass-active mass
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Modeling (I)
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Start with given generator specification 

Generating population

GA initializing

Back-EMF calculation

Initialize     

Inductance (2D transient FEA) 

converged ?

Calculating weight, cost, and efficiency.

Stopping criteria met?

Save optimization results and stop.
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Modeling (II)
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Table 1: Generator specification. 
Quantity Value 

Power (MW), ܲܰ  6 7 8 9 10 
Speed (rpm), ݊ 14 13 12 11 10 
Stator voltage (kV), ܷܰ  3.3 
Phase number, ݉ 3 
Air gap (mm), ݃ 0.001݋ܦ  
Fill factor, ݂݇  0.65 
1st AC resistance ratio, ݇1ݎ  1 
Staking factor, ݇0.95 ݏ 
PM ݎܤ  (T) at working temperature 1.2 
PM relative permeability 1.05 
Slot per pole per phase, 1 ݍ 
Number of parallel branch, ܽ 1 
Slot wedge thickness (mm) 5 
Min. area of 1 turn coil (mm2), ܵܶ  5 
PM specific cost (€/kg) 80 
Copper specific cost (€/kg) 27 

Steel specific cost (€/kg) 16 

Table 2: Free variables. 
Quantity Range 

Frequency (Hz), ݂ 10-60 
Outer diameter (m), ݋ܦ  6-10 
PM thickness (mm), ݄100-5 ܯ 
Thickness of rotor back iron (mm), ݄ݎ  5-100 
Thickness of stator back iron (mm), ݄100-5 ݏ 
Ratio of tooth height over tooth width, ݇ݏݐ  4-10 
Ratio of PM width over pole pitch, ݇ܯ  0.5-0.9 
Ratio of tooth width over slot pitch, ݇ܶ  0.3-0.7 
Current density (A/mm2), 5-2 ܬ 

 
Table 3: Constrains. 
Quantity Range 

Slot pitch (mm), ߬5< ݏ 
Flux density in yoke of stator and rotor (T) <3 
Electric load (kA/m), 50> ܮܧ 

 



Modeling (III)

►Total mass

►Optimization objective
 Cost function: cost of the active material
 Constrain in efficiency: >95%
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ܯ ൌ 97.7
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݊

ton MW
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Optimization results (I)

►Mass and Cost
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Optimization results (II)
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Solutions for high-power generators

► Industry and academic designs
►Less system components, less generator mass and higher 

efficiency are the concerns of these solutions.
 Direct-driven DFIG
 Conventional radial-flux PM generator
 Ironless PM generator
 Super conducting generator
 HVDC generator
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Direct-driven DFIG
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Quantity Value 

Power 10 MW 
Speed 10 rpm
Stator voltage 23.5 kV 
Rotor voltage 0.7 kV  
Slip 0.2 
Stator internal diameter 6 m 
Pole number 600 
Current density 2.5 A/mm^2 
Magnetic load 0.6 T 
Slot per pole per phase 1.5 (stator) and 2 (rotor) 
Air gap  1 mm 
Length 1.3 m 
Efficiency 94% 
Copper weight 30 ton 
Laminations weight 36 ton 
Construction weight 282 ton 

 



Conventional radial-flux machine (I)
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Quantity Value 

Power 10 MW 
Speed 10 rpm
Stator diameter 10 m 
Pole number 320 
Slot per pole per phase 1 
Air gap 10 mm 
Pole number 600 
Copper weight 12 ton 
PM 6 ton 
Lamination weight 47 ton 
Construction weight 260 ton 
Total 325 ton 



Conventional radial-flux machine (II)
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Quantity Value 

Power 8 MW 
Speed 11 rpm
Stator voltage 3.3 kV 
Stator segments 12 
Pole number 120 
Slot number 144 
Pole number 600 
Air gap diameter 6.93 m 
Length 1.1 m 
Air gap  8.66 mm 
Electric load 150 kA/m 
Efficiency 92% 
Copper weight 9.2 ton 
Magnet weight 3.6 ton 
Laminations weight 31 ton 
Construction weight NA 



Ironless PM generator
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6MW Generator Structure by BWP

6.5MW, 48 poles PM machine



Super conducting generator
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HVDC generator
18

Compare with Vestas V90-3MW



Conclusions (I)

►This presentation presents a thorough investigation of the 
global operational offshore wind farms from the perspective of 
generators, and gives the quantitative analysis. 

► It is found that the dominant solution for offshore energy 
conversion system is the multi-stage geared drive train with the 
induction generators. 
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Conclusions (II)

►With the help of numrerical method and genetic algorithm, it is 
found that most of the cost and mass for high-power generators 
go to the supporting structure. 

► It is therefore not economic to simply upscale the conventional 
technology of iron-cored PM generator. 

►Furthermore, developing lightweight technology or other cost-
effective solutions becomes necessary.
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Conclusions (III)

► It reviews the generator solutions for high-power offshore wind 
turbines.
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