Control for Avoiding Negative Damping on Floating Offshore Wind Turbine

2013/1/24
Yuta Tamagawa, Tokyo univ.
Makoto Iida, Tokyo univ.
Chuichi Arakawa, Tokyo univ.
Toshiki Chujo, NMRI
Introduction

- Demand for renewable energy is increasing
 - Securing laying area for wind farm
 - Wind is consistent and strong over the sea
 - Establish offshore wind turbine technology
 - Floating Wind Turbine
 - Able to use on Deep Water
 - Unstable foundation

Verification test cases
- Hywind (statoil, Norway)
- Small test turbine (Nagasaki Japan)

Negative damping of Floating Wind Turbine

• Pitch Control
 Change blade pitch depend on the wind speed variation.
 – Torque : Constant ↔ Thrust : Vary

• Relative wind speed vary due to the motion of tower.
 – Lean to the front (back) → Relative wind speed increase (decrease),
 Thrust decrease (increase)

 Negative damping
Purpose of research

- Applying conventional pitch control
 - Motion of float is negative damped
 - Reducing rated power (Power decrease)
 - Increasing fatigue load

- We need to develop a new pitch control corresponding to floating wind turbine

We propose a new control method for floating turbine to suppress the negative damping with power kept to rate.

Control method

Combining two control (Mixed control)

- Pitch Control (Make rotational speed constant)
- Motion Control (Suppress tower motion θ_{tower})
Experiment and Simulation

• Set floating wind turbine model on test tank with fan.
 (Cooperated with NMRI : National Maritime Research Institute)

• Software for numerical simulation : FAST
 - Developed by NREL (National Renewable Energy Laboratory)
 - Able to compute floating wind turbine
 (NREL 5MW)

Turbine and condition

Wind speed

<table>
<thead>
<tr>
<th>Wind speed [m/s]</th>
<th>3.9</th>
</tr>
</thead>
</table>

Wave (regular)

<table>
<thead>
<tr>
<th>Height [cm]</th>
<th>4.22</th>
<th>6.3</th>
<th>8</th>
<th>8.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period [s]</td>
<td>3.0</td>
<td>2.5</td>
<td>1.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Wind turbine

<table>
<thead>
<tr>
<th>Wind turbine</th>
<th>Blade</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>600mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotor diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300mm</td>
</tr>
<tr>
<td>Nacelle</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150g</td>
<td></td>
</tr>
<tr>
<td>Tower</td>
<td>Hub height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>900mm</td>
<td></td>
</tr>
</tbody>
</table>

Float

<table>
<thead>
<tr>
<th>Float</th>
<th>Diameter</th>
<th>160mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Draft</td>
<td>1270mm</td>
</tr>
<tr>
<td></td>
<td>Displaced volume of water</td>
<td>23kg</td>
</tr>
<tr>
<td>Mooring line</td>
<td>Number</td>
<td>6</td>
</tr>
</tbody>
</table>

2013/1/31
Validation of simulation

Blade load (Thrust)

Float response to the wave

- Aero dynamic force of blade and float response to the wave are generally consistent

Thrust coefficient of test turbine in onshore.
(Change blade pitch on wind speed 3.9 m/s)

Tower amplitude of floating test turbine with wave and no wind.
(Tower amplitude is non-dimensionalized by wave height and wave number)

2013/1/31
Negative damping on experiment
(Wind speed: 3.9m/s, Wave period: 2.5s, Wave height: 6cm)

• Tower pitch amplitude: increase \leftrightarrow\text{ rotor speed vibration: decrease}
• Negative damping has occurred on experiment
Negative damping on simulation

(Wind speed: 3.9m/s, Wave period: 2.5s, Wave height: 6cm)

- Tower motion and rotor speed vibration are smaller than experiment.
- Trends of parameter are matched with experiment.
Mixed control on simulation
(Wind speed: 3.9m/s, Wave period: 2.5s, Wave height: 6cm)

- **K_p**: Control parameter of motion controller on mixed control.
- **Basis of rate on right side is parameter on conventional control. (when K_p=0)**

<table>
<thead>
<tr>
<th>Control parameter K_p</th>
<th>θ_tower Amplitude (deg)</th>
<th>Rotor speed average (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.51 (100%)</td>
<td>336 (100%)</td>
</tr>
<tr>
<td>0.0001</td>
<td>5.38 (97.6%)</td>
<td>336 (99.97%)</td>
</tr>
<tr>
<td>0.001</td>
<td>5.24 (95.1%)</td>
<td>335 (99.7%)</td>
</tr>
<tr>
<td>0.01</td>
<td>3.70 (67.2%)</td>
<td>326 (97.1%)</td>
</tr>
<tr>
<td>0.1</td>
<td>5.01 (91.0%)</td>
<td>239 (71.3%)</td>
</tr>
<tr>
<td>1</td>
<td>5.32 (96.6%)</td>
<td>74.7 (22.2%)</td>
</tr>
</tbody>
</table>

- As K_p=0.01, Tower motion is much suppressed though rotor speed is not so much changed.

 Mixed control can suppress the negative damping with little affect to the rotor speed.
Conclusion

• On simulation aero dynamic force of blade and float response to the wave are generally match to experiment.
• We confirmed that tower motion is amplified by onshore pitch control on experiment and simulation.
• We proposed the new control, mixed control, and shows that mixed control can reduce the tower motion with maintaining rotor speed.

Further study

• Improving simulation model, we will apply this control to practical turbine, verification test turbine or full scale turbine and investigate the applicability and effectiveness of this control in actual seas.

2013/1/31