Monitoring Offshore Wind Energy Use in Europe - Offshore~WMEP

ESTABLISHING A COMMON DATABASE FOR WIND TURBINE FAILURES

Stefan Faulstich, Paul Kühn, Sebastian Pfaffel, Philipp Lyding
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES)
Monitoring Offshore Wind Energy Use in Europe - Offshore-WMEP

- Introduction
 - Motivation
 - WMEP

- Offshore-WMEP
 - Background
 - Different concepts

- Other activities
 - EVW-project
 - IEA-Task 33 “Reliability data”

- Conclusion & Outlook
Introduction
Motivation

Starting Point: Modern wind turbines achieve high availability
Number of faults cause unplanned downtimes \rightarrow high maintenance efforts and costs

Offshore: drop of availability expected

Average availability onshore
Introduction

WMEP

193,000 monthly operation reports
and 64,000 Incident reports
from 1,500 wind turbines

Technology development

Learning curves

Reliability
Introduction

WMEP
Introduction
WMEP

- For differential analysis distinctions regarding size, technical concepts, site conditions, etc. must be made.

WMEP 1453 SWT
>3. year of production
527 SWT

1.-3. year of production
926 SWT

- $P < 500$ kW
- 500 kW $\leq P < 1000$ kW
- $P \geq 1000$ kW

asynchronous
584 SWT

synchronous
199 SWT

- coast line
102 SWT
- highlands
33 SWT
- lowlands
64 SWT

Turbine type???
Year of operation???
Introduction

WMEP
Offshore~WMEP

Concept

- The project is a follow-up project to the onshore wind energy monitoring program ‘Scientific Measurement and Evaluation Program’ (WMEP) and accompanies the offshore wind energy deployment in Germany
- Funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
Offshore-WMEP
General monitoring

- Core issues
 - Site-specific offshore conditions
 - Installation
 - Energy output
 - Reliability
 - Availability
 - Facility concepts
 - Operation and maintenance concepts
 - Investment and operating costs
Offshore-WMEP
Participant specific analyses
Offshore-WMEP
Participant specific analyses
Offshore~WMEP
Participant specific analyses

- **Optimization of intervals**

- **Constitute priorities**

- **Optimization of strategies**

- **LCC prediction**

Source: IZP Dresden
Offshore-WMEP

Concept of confidentiality

analyses

public

group results

individual results

Highly aggregated anonymous Benchmarks

At least 3 different WF

Reliability characteristics

Single wind farm analyses

Maintenance optimisation

© Fraunhofer IWES
Offshore-WMEP
Concept of data acquisition

Design
- verification
- modification

Strategy
- reactive
- time based
- condition based
- reliability based

Planning
- improvement
- consolidation
- interval opti.
- responsibility

Event
- failure
- fault
- inspection
- repair

Analysis
- MTBF, MTTR
- weak points
- expenses
- life cycle cost

Documentation
- subassembly
- cause
- time steps
- cost

Archiving
- core data (RDS-PP)
- in-service data
- event data (ZEUS)

Accurate, detailed documentation
Consistent naming of components
Unified description of irregularities and activities

Use of operating experiences

© Fraunhofer IWES
Other activities
EVW (Increasing availability of WTIs)

- Funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

- Task: Knowledge management and maintenance optimization as methodical base for increasing the availability of wind power plants
Other activities
EVW (Increasing availability of WTors)

- Developing a test and demonstration system
- Preparing recommended practices for reliability based maintenance
- Technical guidelines / standards (Federation of German Windpower)

- Expand common database (onshore and offshore)
Other activities

65th IEA Topical Expert Meeting TEM (IEA Wind Task 11)
International statistical analysis on wind turbine failures

- TEM in Kassel / Germany, March 2011: 23 experts from Denmark, Finland, GB, Germany, Netherlands, Norway, Sweden, USA; (16 presentations)
- It was decided to launch a new IEA Wind Task on Databases for Wind Turbine Failures
- Task Proposal was prepared by Fraunhofer IWES in cooperation with SINTEF, NTNU and Chalmers University of Technology
IEA Wind Task Proposal – Reliability Data

Future work and key questions

- Priorities for future work defined at the TEM:
 - Standardization of the structure databases (DB)
 - Definition of subassemblies and failures
 - Level of detail of the DB
 - Confidentiality and access to the DB
 - Harmonization of data analysis

- Key questions:
 - Which data are to be collected?
 - What data are needed for the different analyses?
 - How to implement a system to collect information in an appropriate, structured, detailed and strongly automated way?
IEA Wind Task Proposal – Reliability Data

Objectives

The objectives of the proposed IEA Task are threefold:

1. Provide an international, open platform for regular and continuous exchange of experience and progress from individual research projects and existing activities on failure statistics on wind turbines.

2. Development of *Recommended Practices for Reliability Data* during the course of the Task.

3. Identify areas for further research and development as well as standardization needs.
Conclusions & Outlook

- Potential for availability improvement and for reducing maintenance effort exists
- Common database needed due to parameter diversity
- Different concepts are necessary
 - Overall data structure
 - Standards and definitions
 - Accessibility of information
- Harmonization will take place in the new IEA-Task
- Offshore~WMEP is going from concept phase to the first implementation phase ➔ database will be filled