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prof. Ronnie Belmans & prof. Dirk Van Hertem

• PhD projects
– VSC HVDC in AC meshed grids (Stijn Cole, finished 2010)
– Integration of Multi-terminal VSC HVDC (Jef Beerten)
– Optimal investment strategies for offshore wind (Hakan Ergun)
– …

• Projects (2006 – …)
– Randstad HVDC (2006 – 2007)
– BelGer – Nemo (2006 – 2007)
– Imera power (2007 – 2009)



VSC HVDC at KU Leuven
• Member of CIGRE WG on HVDC (2006 – …)

– B4.46 – Economic Aspects of VSC HVDC
– B4.52 – DC Grids Feasibility Study
– B4.58 –Load flow and Direct Voltage Control in a HVDC Grid
– B4/B5.59 – Control and Protection of HVDC Grids
– C4/B4/C1 - Influence of Embedded HVDC Transmission on System Security and AC 

Network Performance 

• Master thesis (2008 - …)
– Loss minimization (Gilles Daelemans*)
– Economics of AC and DC wind farm connections (Bram Van Eeckhout*)
– MTDC protection (Kenny De Kerf*)
– Connecting Belgium and th UK (Frederik Leung Shun*)
– VSC HVDC Connected variable speed operated wind farms (Pieter Hellings)
– DC voltage control (Carlos Dierckxsens*)
– HVDC connected large-scale solar plants (Philippe Hoylaerts*)
– Multi-terminal HVDC and wind (Stijn Vandenbroucke*)

*: in cooperation with ABB Sweden
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Offshore Grid Proposal by Statnett
(Source Statnett, 2008)

Vision of High Voltage 
Super Grid 
(Source: Dowling and 
Hurley, 2004)
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Offshore Grid examined in the 
Greenpeace study 
(Source: Woyte et al, 2008)

KEMA Ocean grids

Offshore grids and supergrid …
What will the future grids look like?



Offshore grids and supergrid … 
VSC HVDC technology

• VSC HVDC only developed for point-to-point, but…
• …looks very promising for future DC grids

– Converter’s DC side has constant voltage → converters can be 
easily connected to DC network. 

• Extension to ‘pseudo-multi-terminal’ systems 
straightforward: e.g. star-connections



Offshore grids and supergrid … 
DC voltage control

o DC Voltage  AC frequency
– Changes when ‘consumption’ ≠ ‘production’

o Can different converters contribute 
to the DC voltage control?



DC Voltage Control in point-to-point VSC HVDC

• 2-terminal scheme
• Active power control

 converter 1

• DC voltage control
 converter 2

• Reactive power control
 converter 1 and/or 2

• AC voltage control
 converter 1 and/or 2

Converter control principles

Example:



DC Voltage Control in DC Grid
Master-slave

• 1 DC voltage controlling converter
– Converter has to deal with all DC grid events
– What if this converter fails?
– Which TSO wants this ‘DC slack bus’?

DC AC 
2

AC 
1

Slack converter

P1

P2

P3

P4Udc



DC Voltage Control in DC Grid 
Voltage Margin Method

• Improved master-slave approach
– 1 DC voltage controlling converter at a time

• Converter takes over when margins/limits hit
– Voltage limits (slack outage)
– Current limits (‘sharing’)
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DC Voltage Control in DC Grid 
Voltage Margin Method

• Improved master-slave approach
– 1 DC voltage controlling converter at a time

• Converter takes over when margins/limits hit
– Voltage margins (slack outage)
– Current limits (‘sharing’)
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DC Voltage Control in DC Grid 
Voltage droop

• Distributed DC voltage control
– Often referred to as ‘distributed slack bus’
– Based on DC voltage droop

DC AC 
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P4Udc



Power or DC voltage control?
Control objectives
• Pac constant
• Pdc constant
• Udc constant

• Udc distributed control
– Udc – Idc droop
– Udc – Pdc droop
– Udc – Pac droop

• …



Modeling VSC HVDC Systems

• Steady-state (power flow control)
– Effect on AC and DC power flows
– Overall grid state after disturbance
– N-1 contingency analyses
– DC voltage droop settings (primary control)
– Starting point for restorative actions (secondary control)

• Dynamics
– AC and/or DC system interactions (transient stability)
– Fast converter dynamics + switching (EMTP)

Different time scales 
 different programs and modeling requirements



Power flow modeling

P= dc dcU I

P

2 2U 1 1U 

1 2P = lossP P  2 2U 1 1U 

PQ PQ

P1 P2
1 2P = lossP P  2 2U 1 1U 

PV PV

P1 P2

U=Uref

Q control: U control:

Simplified model
• represent converter as PQ or PV node
• one converter positive active power, second one negative active power



Power flow modeling
• Combined/unified approach (AC+DC)

– Solution of AC and DC grid together
– Extension of Jacobian matrix
 Only one iterative problem

• Sequential approach (AC, DC)
1. Use DC grid variables as inputs to solve the AC equations
2. Use AC grid variables as inputs to solve the DC equations 
 Easy extension of existing power flow programs



AC/VSC MTDC power flow
DC grid power flow
• DC grid power flow equations:

with  power-voltage droop       with  current-voltage droop:

• Defining modified active power vector,

• the set of equations can be solved using a NR iteration.



Modeling VSC HVDC Systems

• Steady-state (power flow control)
– Effect on AC and DC power flows
– Overall grid state after disturbance
– N-1 contingency analyses
– DC voltage droop settings (primary control)
– Starting point for restorative actions (secondary control)

• Dynamics
– AC and/or DC system interactions (transient stability)
– Fast converter dynamics + switching (EMTP)

Different time scales 
 different programs and modeling requirements



Transient stability modeling

• Converter dynamics
• Power electronics time delay
• Decoupled current control (limits and AWU)



Transient stability modeling

• Outer q control loop
– Constant active power control
– Constant DC voltage control
– DC voltage droop



Transient stability modeling

• DC grid model
– Pi equivalent with lumped parameters

DC line dynamics:



Linking steady-state and dynamics

• DC power flow before converter outage
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Conclusions

• Steady-state and dynamic models serve different 
purposes
– Power flow algorithms allow to study the post-disturbance effect 

of control strategies, droop values, limits, … on the steady-state 
powers and voltage.

– Transient models allow to study the dynamic interactions 
between the converters and the dynamic effect of control 
schemes, droop values, limits, … 

• When properly modeled, the results of the power flow 
analysis are in line with the steady-state post-
disturbance dynamic results.


