







#### Modeling and control of Multiterminal VSC HVDC Systems

Jef Beerten

University of Leuven (KU Leuven), Belgium





prof. Ronnie Belmans & prof. Dirk Van Hertem

- PhD projects
  - VSC HVDC in AC meshed grids (Stijn Cole, finished 2010)
  - Integration of Multi-terminal VSC HVDC (Jef Beerten)
  - Optimal investment strategies for offshore wind (Hakan Ergun)
  - ...
- Projects (2006 …)
  - Randstad HVDC (2006 2007)
  - BelGer Nemo (2006 2007)
  - Imera power (2007 2009)

# VSC HVDC at KU Leuven

- Member of CIGRE WG on HVDC (2006 ...)
  - B4.46 Economic Aspects of VSC HVDC
  - B4.52 DC Grids Feasibility Study
  - B4.58 –Load flow and Direct Voltage Control in a HVDC Grid
  - B4/B5.59 Control and Protection of HVDC Grids
  - C4/B4/C1 Influence of Embedded HVDC Transmission on System Security and AC Network Performance
- Master thesis (2008 ...)

ecta

- Loss minimization (Gilles Daelemans\*)
- Economics of AC and DC wind farm connections (Bram Van Eeckhout\*)
- MTDC protection (Kenny De Kerf\*)
- Connecting Belgium and th UK (Frederik Leung Shun\*)
- VSC HVDC Connected variable speed operated wind farms (Pieter Hellings)
- DC voltage control (Carlos Dierckxsens\*)
- HVDC connected large-scale solar plants (Philippe Hoylaerts\*)
- Multi-terminal HVDC and wind (Stijn Vandenbroucke\*)
- \*: in cooperation with ABB Sweden

## VSC HVDC at KU Leuven Publications: Journal



- Beerten J., Cole S., Belmans R.: "Generalized Steady-State VSC MTDC Model for Sequential AC/DC Power Flow Algorithms.," IEEE Transactions on Power Systems, accepted for publication., 2012.
- Dierckxsens C, Srivastava K., Reza M., Cole S., Beerten J., Belmans R.: "A Distributed DC Voltage Control Method for VSC MTDC Systems," Journal: Electric Power Systems Research, vol. 82,, 2012; pp.54–58.
- De Kerf K., Srivastava K., Reza M., Bekaert D., Cole S., Van Hertem D., Belmans R.: "Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems," IET GTD, April, 2011; pp. 496 503.
- Buijs P., Bekaert D., Cole S., Van Hertem D., Belmans R.: "Transmission investments in Europe: Going beyond standard solutions," Energy Policy: volume 39, issue 3, 2011; pp. 1794-1801.
- Van Hertem D., Ghandhari M.: "Multi-terminal VSC HVDC for the European supergrid: Obstacles," Renewable and Sustainable Energy Reviews, Volume 14, Issue 9, ISSN 1364-0321, 2011; pp. 3156-3163.
- Cole S., Beerten J., Belmans R.: "Generalized Dynamic VSC MTDC Model for Power System Stability Studies," IEEE Trans. on Power Systems, vol.25, no.3, August, 2010; pp. 1655-1662.
- Cole S., Belmans R.: "Transmission of bulk power. The History and Applications of Voltage-Source Converter High-Voltage Direct Current Systems. ," IEEE Industrial Electronics Magazine , September 2009, 2009; pp. 19-24.
- Van Eeckhout B., Van Hertem D., Reza M., Srivastava K., Belmans R.: "Economic comparison of VSC HVDC and HVAC as transmission system for a 300 MW offshore wind farm," ETEP, 2009

## VSC HVDC at KU Leuven Publications: Conference I



- Ergun H., Van Hertem D., Belmans R.: "Multi level optimization for offshore grid planning.," Cigrè International Symposium The Electric Power System of the future, Integrating supergrids and microgrids., Bologna-Italy, September 13-16, 2011.
- Beerten J., Van Hertem D., Belmans R.: "VSC MTDC Systems with a Distributed DC Voltage Control - A Power Flow Approach," Proc. IEEE PowerTech 2011, Trondheim, Norway, June 19-23, 2011
- Leung Shun E., Reza M., Srivastava K., Cole S., Van Hertem D., Belmans R.: "Influence of VSC HVDC on Transient Stability: Case study of the Belgian grid,", July 29, 2010
- Ergun H., Van Hertem D., Belmans R.: "CoST Of Wind Appropriate Connection Selection Tool for Offshore Wind Farms," International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks or Offshore Wind Power Plants, Quebec, October 18-19, 2010
- Van Hertem D., Eriksson R., Söder L., Ghandhari M.: "Coordination of Multiple Power Flow Controlling Devices in Transmission Systems," IET ACDC edition:9, London, UK, October 20-21, 2010
- Westermann D., Van Hertem D., Küster A., Klöckl B., Atmuri R., Rauhala T.: "Voltage Source Converter (VSC) HVDC for Bulk Power Transmission – Technology and Planning Method," IET ACDC edition:9, London, UK, October 20-21, 2010
- Beerten J., Cole S., Belmans R.: "Implementation Aspects of a Sequential AC/DC Power Flow Computation Algorithm for Multi-terminal VSC HVDC Systems," Proc. IET ACDC2010, London, October 20-21, 2010

## VSC HVDC at KU Leuven Publications: Conference II



- Beerten J., Cole S., Belmans R.: "A Sequential AC/DC Power Flow Algorithm for Networks Containing Multi-terminal VSC HVDC Systems.," IEEE PES GM'10.
- Daelemans G., Srivastava K., Reza M., Cole S., Belmans R.: "Minimization of steady state losses in meshed networks using VSC HVDC," IEEE PES GM'09.
- Buijs P., Cole S., Belmans R.: " TEN-E revisited: opportunities for HVDC technology," EEM'09, Leuven, Belgium, May 27-29, 2009; 6 pages.
- Cole S., Van Hertem D., Belmans R.: "VSC HVDC as an Alternative Grid Investment in Meshed Grids," ICIS, Rotterdam, The Netherlands, 10-12 November, 2008; 6 pages.
- Cole S., Belmans R.: "Modelling of VSC HVDC Using Coupled Current Injectors," IEEE PES GM'08
- Cole S., Van Hertem D., Pardon I., Belmans R.: "Randstad HVDC: A Case Study of VSC HVDC Bulk Power Transmission in a Meshed Grid," Security and Reliability of Electric PowerSystems, Cigré regional meeting, Tallinn, Estonia , June 18-20 , 2007; pp. 83-89.
- Cole S., Van Hertem D., Belmans H.: " Connecting Belgium and Germany using HVDC: A
- preliminary study," Power Tech 2007, 2007 IEEE Powertech, Lausanne, Switzerland, 1 5
- July 2007, 2007; 5 pages.
- Van Hertem D., Verboomen J., Cole S., Kling W., Belmans R.: "Influence of phase shifting transformers and HVDC on power system losses," IEEE PES 2007.

#### Offshore grids and supergrid ... What will the future grids look like?





ecta

Offshore Grid Proposal by Statnett (Source Statnett, 2008)



Offshore Grid examined in the Greenpeace study (Source: Woyte et al, 2008)



Vision of High Voltage Super Grid (Source: Dowling and ROURE [22]: Possible meshed MOC (meshed 2) consection of otherweider farms. Dated laws are MOC (meshed 2) consection of otherweider farms.











Czisch – Supergrid for renewab le energies











- VSC HVDC only developed for point-to-point, but...
- ...looks very promising for future DC grids
  - Converter's DC side has constant voltage  $\rightarrow$  converters can be easily connected to DC network.
- Extension to 'pseudo-multi-terminal' systems straightforward: e.g. star-connections





#### Offshore grids and supergrid ... DC voltage control

- $\circ$  DC Voltage  $\approx$  AC frequency
  - Changes when 'consumption' ≠ 'production'
- Can different converters contribute to the DC voltage control?







# DC Voltage Control in point-to-point VSC HVDC



#### Converter control principles

#### • 2-terminal scheme

ecta

- Active power control
  - converter 1
- DC voltage control
  - converter 2

#### Example:



- Reactive power control
  - converter 1 and/or 2
- AC voltage control
  - converter 1 and/or 2

## DC Voltage Control in DC Grid Master-slave

- 1 DC voltage controlling converter
  - Converter has to deal with all DC grid events
  - What if this converter fails?
  - Which TSO wants this 'DC slack bus'?



### DC Voltage Control in DC Grid Voltage Margin Method





### DC Voltage Control in DC Grid Voltage Margin Method





## DC Voltage Control in DC Grid Voltage droop



- Distributed DC voltage control
  - Often referred to as 'distributed slack bus'
  - Based on <u>DC voltage droop</u>





# Power or DC voltage control? Control objectives

- P<sub>ac</sub> constant
- P<sub>dc</sub> constant
- U<sub>dc</sub> constant



- U<sub>dc</sub> distributed control
  - U<sub>dc</sub> I<sub>dc</sub> droop
  - $U_{dc} P_{dc} droop$
  - $U_{dc} P_{ac} droop$







- Steady-state (power flow control)
  - Effect on AC and DC power flows
  - Overall grid state after disturbance
  - N-1 contingency analyses
  - DC voltage droop settings (primary control)
  - Starting point for restorative actions (secondary control)
- Dynamics
  - AC and/or DC system interactions (transient stability)
  - Fast converter dynamics + switching (EMTP)

#### Different time scales

→ different programs and modeling requirements







#### Simplified model

- represent converter as PQ or PV node
- one converter positive active power, second one negative active power

$$U_1 \not \leq \delta_1 \qquad \xleftarrow{P_1} P_1 = -P_2 - P_{loss} \stackrel{P_2}{\not P_2} \xrightarrow{U_2} \delta_2$$

$$PQ \qquad PQ$$

$$U_{1} \underline{\angle \delta_{1}} \xrightarrow{\leftarrow} P_{1} P_{1} = -P_{2} - P_{loss} \xrightarrow{P_{2}} U_{2} \underline{\angle \delta_{2}}$$
  
PV U=U<sub>ref</sub> PV

# Power flow modeling

ecta



- Combined/unified approach (AC+DC)
  - Solution of AC and DC grid together
  - Extension of Jacobian matrix
  - $\rightarrow$  Only one iterative problem



- Sequential approach (AC, DC)
  - 1. Use DC grid variables as inputs to solve the AC equations
  - 2. Use AC grid variables as inputs to solve the DC equations
  - $\rightarrow$  Easy extension of existing power flow programs



## AC/VSC MTDC power flow DC grid power flow

• DC grid power flow equations:

$$P_{dc_i} = 2 U_{dc_i} \sum_{\substack{j=1 \ j \neq i}}^n Y_{dc_{ij}} \cdot (U_{dc_i} - U_{dc_j})$$

$$I_{dc_i} = \sum_{\substack{j=1\\j\neq i}}^n Y_{dc_{ij}} \cdot (U_{dc_i} - U_{dc_j})$$

with power-voltage droop

$$P_{dc_i} = P_{dc,0_i} - \frac{1}{k_i} (U_{dc_i} - U_{dc,0_i})$$

with current-voltage droop:  

$$I_{dc_i} = I_{dc,0_i} - \frac{1}{k_i}(U_{dc_i} - U_{dc,0_i})$$

• Defining modified active power vector,

$$X_{dc} = \left[\underbrace{P_{dc_1}}_{\text{slack}}, \underbrace{P_{dc_2} \dots P_{dc_k}}_{P-\text{control}}, \underbrace{I_{dc,0_{k+1}} \dots I_{dc,0_l}}_{U-I \text{ droop}}, \underbrace{P_{dc,0_{l+1}} \dots P_{dc,0_m}}_{U-P \text{ droop}}, \underbrace{0 \dots 0}_{\text{outage}}\right]^T$$

the set of equations can be solved using a NR iteration.

$$\left( U_{dc} \frac{\partial X_{dc}}{\partial U_{dc}} \right)^{(j)} \cdot \frac{\Delta U_{dc}}{U_{dc}}^{(j)} = \Delta X_{dc}^{(j)} \quad \Delta X_{dc_i}^{(j)} = \begin{cases} P_{dc_i}^{(k)} - P_{dc_i}(U_{dc}^{(j)}) & \forall i: \ 2 < i \le k \\ I_{dc,0_i} - I_{dc,0_i}(U_{dc}^{(j)}) & \forall i: \ k \le i \le l \\ P_{dc,0_i} - P_{dc,0_i}(U_{dc}^{(j)}) & \forall i: \ l \le i \le m \\ -P_{dc_i}(U_{dc}^{(j)}) & \forall i: \ m < i \le m \end{cases}$$







- Steady-state (power flow control)
  - Effect on AC and DC power flows
  - Overall grid state after disturbance
  - N-1 contingency analyses
  - DC voltage droop settings (primary control)
  - Starting point for restorative actions (secondary control)
- Dynamics
  - AC and/or DC system interactions (transient stability)
  - Fast converter dynamics + switching (EMTP)

#### Different time scales

→ different programs and modeling requirements

# Transient stability modeling

• Converter dynamics

e lecto

- Power electronics time delay
- Decoupled current control (limits and AWU)



# Transient stability modeling

• Outer q control loop

electa

- Constant active power control
- Constant DC voltage control
- DC voltage droop



(a) Constant  $P_s$  controller



(b)  $Constant U_{dc}$  controller



(c)  $U_{dc}$  droop controller



# **Transient stability modeling**

DC grid model 

ecta

- Pi equivalent with lumped parameters



$$C_{dc}\frac{du_{dc_1}}{dt} = i_{dc_1} - i_{cc},$$
$$C_{dc}\frac{du_{dc_2}}{dt} = i_{dc_2} + i_{cc},$$

DC line dynamics:  $L_{dc}\frac{di_{cc}}{dt} = u_{dc_1} - u_{dc_2} - R_{dc}i_{cc}$ .







• DC power flow before converter outage





• DC power flow after converter outage







3

0.30

-0.2

0.00

0.05

0.25 0.15 0.20 Time t (s)

0.10

0.05

0.99

0.00

0.10 Time t (s)

0.15

0.20

0.25

0.30





- Steady-state and dynamic models serve different
   purposes
  - Power flow algorithms allow to study the post-disturbance effect of control strategies, droop values, limits, ... on the steady-state powers and voltage.
  - Transient models allow to study the dynamic interactions between the converters and the dynamic effect of control schemes, droop values, limits, …
- When properly modeled, the results of the power flow analysis are in line with the steady-state post-disturbance dynamic results.