
Modeling and control of Multi-
terminal VSC HVDC Systems

Jef Beerten

University of Leuven (KU Leuven), Belgium
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prof. Ronnie Belmans & prof. Dirk Van Hertem

• PhD projects
– VSC HVDC in AC meshed grids (Stijn Cole, finished 2010)
– Integration of Multi-terminal VSC HVDC (Jef Beerten)
– Optimal investment strategies for offshore wind (Hakan Ergun)
– …

• Projects (2006 – …)
– Randstad HVDC (2006 – 2007)
– BelGer – Nemo (2006 – 2007)
– Imera power (2007 – 2009)



VSC HVDC at KU Leuven
• Member of CIGRE WG on HVDC (2006 – …)

– B4.46 – Economic Aspects of VSC HVDC
– B4.52 – DC Grids Feasibility Study
– B4.58 –Load flow and Direct Voltage Control in a HVDC Grid
– B4/B5.59 – Control and Protection of HVDC Grids
– C4/B4/C1 - Influence of Embedded HVDC Transmission on System Security and AC 

Network Performance 

• Master thesis (2008 - …)
– Loss minimization (Gilles Daelemans*)
– Economics of AC and DC wind farm connections (Bram Van Eeckhout*)
– MTDC protection (Kenny De Kerf*)
– Connecting Belgium and th UK (Frederik Leung Shun*)
– VSC HVDC Connected variable speed operated wind farms (Pieter Hellings)
– DC voltage control (Carlos Dierckxsens*)
– HVDC connected large-scale solar plants (Philippe Hoylaerts*)
– Multi-terminal HVDC and wind (Stijn Vandenbroucke*)

*: in cooperation with ABB Sweden
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Offshore Grid Proposal by Statnett
(Source Statnett, 2008)

Vision of High Voltage 
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(Source: Woyte et al, 2008)
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Offshore grids and supergrid …
What will the future grids look like?



Offshore grids and supergrid … 
VSC HVDC technology

• VSC HVDC only developed for point-to-point, but…
• …looks very promising for future DC grids

– Converter’s DC side has constant voltage → converters can be 
easily connected to DC network. 

• Extension to ‘pseudo-multi-terminal’ systems 
straightforward: e.g. star-connections



Offshore grids and supergrid … 
DC voltage control

o DC Voltage  AC frequency
– Changes when ‘consumption’ ≠ ‘production’

o Can different converters contribute 
to the DC voltage control?



DC Voltage Control in point-to-point VSC HVDC

• 2-terminal scheme
• Active power control

 converter 1

• DC voltage control
 converter 2

• Reactive power control
 converter 1 and/or 2

• AC voltage control
 converter 1 and/or 2

Converter control principles

Example:



DC Voltage Control in DC Grid
Master-slave

• 1 DC voltage controlling converter
– Converter has to deal with all DC grid events
– What if this converter fails?
– Which TSO wants this ‘DC slack bus’?

DC AC 
2

AC 
1

Slack converter

P1

P2

P3

P4Udc



DC Voltage Control in DC Grid 
Voltage Margin Method

• Improved master-slave approach
– 1 DC voltage controlling converter at a time

• Converter takes over when margins/limits hit
– Voltage limits (slack outage)
– Current limits (‘sharing’)
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DC Voltage Control in DC Grid 
Voltage Margin Method

• Improved master-slave approach
– 1 DC voltage controlling converter at a time

• Converter takes over when margins/limits hit
– Voltage margins (slack outage)
– Current limits (‘sharing’)
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Converter 1 



DC Voltage Control in DC Grid 
Voltage droop

• Distributed DC voltage control
– Often referred to as ‘distributed slack bus’
– Based on DC voltage droop

DC AC 
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AC 
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P4Udc



Power or DC voltage control?
Control objectives
• Pac constant
• Pdc constant
• Udc constant

• Udc distributed control
– Udc – Idc droop
– Udc – Pdc droop
– Udc – Pac droop

• …



Modeling VSC HVDC Systems

• Steady-state (power flow control)
– Effect on AC and DC power flows
– Overall grid state after disturbance
– N-1 contingency analyses
– DC voltage droop settings (primary control)
– Starting point for restorative actions (secondary control)

• Dynamics
– AC and/or DC system interactions (transient stability)
– Fast converter dynamics + switching (EMTP)

Different time scales 
 different programs and modeling requirements



Power flow modeling

P= dc dcU I

P

2 2U 1 1U 

1 2P = lossP P  2 2U 1 1U 

PQ PQ

P1 P2
1 2P = lossP P  2 2U 1 1U 

PV PV

P1 P2

U=Uref

Q control: U control:

Simplified model
• represent converter as PQ or PV node
• one converter positive active power, second one negative active power



Power flow modeling
• Combined/unified approach (AC+DC)

– Solution of AC and DC grid together
– Extension of Jacobian matrix
 Only one iterative problem

• Sequential approach (AC, DC)
1. Use DC grid variables as inputs to solve the AC equations
2. Use AC grid variables as inputs to solve the DC equations 
 Easy extension of existing power flow programs



AC/VSC MTDC power flow
DC grid power flow
• DC grid power flow equations:

with  power-voltage droop       with  current-voltage droop:

• Defining modified active power vector,

• the set of equations can be solved using a NR iteration.



Modeling VSC HVDC Systems

• Steady-state (power flow control)
– Effect on AC and DC power flows
– Overall grid state after disturbance
– N-1 contingency analyses
– DC voltage droop settings (primary control)
– Starting point for restorative actions (secondary control)

• Dynamics
– AC and/or DC system interactions (transient stability)
– Fast converter dynamics + switching (EMTP)

Different time scales 
 different programs and modeling requirements



Transient stability modeling

• Converter dynamics
• Power electronics time delay
• Decoupled current control (limits and AWU)



Transient stability modeling

• Outer q control loop
– Constant active power control
– Constant DC voltage control
– DC voltage droop



Transient stability modeling

• DC grid model
– Pi equivalent with lumped parameters

DC line dynamics:



Linking steady-state and dynamics

• DC power flow before converter outage
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Conclusions

• Steady-state and dynamic models serve different 
purposes
– Power flow algorithms allow to study the post-disturbance effect 

of control strategies, droop values, limits, … on the steady-state 
powers and voltage.

– Transient models allow to study the dynamic interactions 
between the converters and the dynamic effect of control 
schemes, droop values, limits, … 

• When properly modeled, the results of the power flow 
analysis are in line with the steady-state post-
disturbance dynamic results.


