Structural design and analysis of a 10 MW wind turbine blade

Deep Sea Offshore Wind R&D Seminar

Royal Garden Hotel, Trondheim, Norway 19 January, 2012

Kevin Cox, PhD Candidate Dept. of Engineering Design and Materials NTNU, Norwegian University of Science and Technology

Outline

- Motivation
- Objective
- 10 MW turbine parameters
- Blade structural design
- Simulations performed
- Design strategy
- Simulation results
- Optimization studies
- Future studies
- Conclusions

NTNU Norwegian University of

Science and Technology

Motivation

Little information publically available on blade structure

- Significant lack of
 - Composite layups
 - Buckling studies
- Many existing studies on blade structure use simplified loading conditions
 - Omit gravity and centrifugal loads
 - Simplified wind (lift) loads, no drag or torsional loads
- Airfoil skin is often not included in FE studies
 - Has little effect on bending stiffness
 - Very significant for buckling studies

NTNU Norwegian University of Science and Technology

Objective

To specify the structural aspects of a 70 m blade to be used as a reference case for future research projects

- Designed with respect to industry standard failure criteria for composites
- Select appropriate materials
- Determine composite layup
 - Ply thickness, number, stacking sequence
 - Fiber orientations
 - Ply drop locations
- Investigate optimization techniques
 - Composite sandwich structures
 - Adaptive blade: bend-twist coupling

NTNU Norwegian University of Science and Technology

10 MW Turbine and Blade Parameters

• **Defined in** [Frøyd and Dahlhaug. Rotor design for a 10 MW offshore wind turbine. ISOP, Maui, USA, 2011)

Blade structural design

Simulations Performed in Abaqus

NOWITECH

	EWM	EOG
Wind speed	70 m/s	19.3 m/s
Omega	0 rad/s	1.28 rad/s
Blade pitch	90°	0°
Yaw error	15°	0°

EWM (extreme wind speed model) EOG (extreme operating gust)

7

Norwegian Research Centre for Offshore Wind Technology

What is buckling?

Instability failure due to compressive forces

- Buckling failure occurs <u>before</u> the ultimate compressive stress/strain of the material
- Nonlinear phenomenon
- Buckling occurs at a critical load (force) at which the structure fails: $F_{crit} \propto \frac{1}{length^2}$

Compare critical load for different rod lengths (Constant cross-section and stiffness)

Rod length	Normalized critical load		
50 meters	100%		
60 meters	69%		
70 meters	51%		

Design strategy: composite layup

Iterative procedure

- Blade split into 38 sections
- One ply added to one section at a time
- Symmetric and balanced layup
- Equivalent layups on upwind and downwind sides
- No more than 2 plies (4 mm) could start or stop at any section

Upwind side

Spar flange layup

- Bending stiffness (flap-wise)
 - Carbon fiber plies stacked until strain failure and deflection criteria avoided
- Buckling resistance
 - ± 45° glass fiber plies added until critical load was > design load * SF
- Aerodynamic shell and shear web layups presented in the paper

Material	E _{xx}	E _{yy}	G _{xy}	υ _{xy}	ρ	Thickness	Wt % of spar flange
0° Carbon	139 GPa	9 GPa	5.5 GPa	0.32	1560 kg/m3	2.0 mm	38.9 %
0º Glass	41 GPa	9 GPa	4.1 GPa	0.30	1890 kg/m3	1.0 mm	61.1%

Simulation results

Load case	Result	Position 1	Pos. 2	Pos. 3	Pos. 4
	Tip flap def. (m)	5.052	5.072	5.120	5.115
FOG	Max strain (%)	0.198	0.270	0.194	0.166
LOO	Min strain (-%)	0.167	0.277	0.170	0.169
	Crit. buckling	2.005	1.898	1.666	1.872
	Tip flap def. (m)	4.723	NA	4.795	NA
	Max strain (%)	0.181	NA	0.176	NA
	Min strain (-%)	0.154	NA	0.159	NA
	Crit. buckling	1.751	NA	1.659	NA

NOWITECH

- ► EOG, Pos. 3 \rightarrow Maximum tip deflection
- EWM, Pos. $3 \rightarrow$ Critical buckling load
- ► EOG, Pos. 2 \rightarrow minimum edgewise strain
- Critical buckling load drops by 26% in absence of airfoil skin

Simulation results

OWITECH Norwegian Research Centre for Offshore Wind Technology

Optimization study #1: Sandwich structure

Background

- Increase structural performance with a minimal weight gain
- 2 stiff skins separated by a lightweight core material
 - (Composite) skins provide bending stiffness
 - Core provides shear stiffness
- Optimization study
 - Implement 30 mm of core material in spar flanges
 - Decrease in bending stiffness
 - Increase in critical buckling load
 - Small increase in weight

Optimization study #2: Adaptive blade

Background

- Ability of a blade to adapt to changes in loading conditions
 - Improved efficiency
 - Longer fatigue life
 - Reduce magnitude of high load conditions, ex. EOG
- Composite materials can exhibit bend-twist coupling due to unbalanced layup
- Optimization study
 - Rotate all 0° carbon fibers by 20°
 - Twist induced towards feather (load reduction)
 - Decrease in flap-wise bending stiffness
 - Zero change in mass

Results of optimization studies

Optimization studies compared with standard blade results							
Optimization study	Tip flap def.	Min Strain	Crit. buckling load	Total mass	EOG Tip twist	EOG Nat. freq	
Sandwich	5.40 m	-0.204%	2.27	26086 kg	-1.0º	0.706 hz	
	5.5%	5.4%	36.8%	4.3%	31.2%	-3.9%	
Adaptive	7.94 m	-0.259%	1.68	24935 kg	<mark>6.6</mark> °	0.583 hz	
	55.0%	52.3%	0.9%	0.0%	-853.8%	-20.6%	

Norwegian Research Centre for Offshore Wind Technology

NOWITECH

Future studies

- Is the blade too stiff?
 - 8.5 m tip deflection allowed, but only 5.1 m achieved
- ► Fatigue
 - Edgewise
 - Flapwise
- Dynamic (wind gust) studies
 - Initial studies suggested no issues
- Bend-twist coupling
 - What does 6.6° twist mean for the turbine power output?
 - Is there load reduction and can it lessen requirements elsewhere in the turbine?

Conclusions

Structural components of a 70 m blade were designed

- Materials
- Composite layups

► The blade was designed to withstand EOG and EWM load conditions

- Tip deflection
- Material strains
- Critical buckling load
- Natural frequency
- Optimization studies were performed and showed potential for further blade optimization
 - Sandwich structures: 36.8% increase in critical buckling load with 4.3% increase in mass
 - Bend-twist coupled blade: 6.6° of tip twist achieved during EOG

Questions

Thank you for your attention!

Kevin Cox, PhD candidate, NTNU Dept. of Engineering Design and Materials Kevin.cox@ntnu.no

