DaCS

Durable advanced Concrete Solutions

Report No. 07

Banedekke av betong på Ørlandet KampFlyplass 2009– 2019 Sammenstilling av resultater fra målinger av

porestruktur i betong

WP 2. Production and documentation of frost durable concrete: air entrainment, cracking and scaling in performance testing

Author(s) Ernst Mørtsell (Norbetong AS)

Banedekke av betong på Ørlandet KampFlyplass 2009–2019

Sammenstilling av resultater fra målinger av porestruktur i betong

KEYWORDS: Air void analysis AVA	author(s) Ernst Mørtsell (Norbetor	DATE 2019-11-06						
IMA ASTM C457		version For review						
	REPORT LANGUAGE		NUMBER OF PAGES/APPENDICES:					
	Norsk		221 + Appendices					
	ABSTRACT							
	Abstract heading							
	Sammenstilling av pr	Sammenstilling av prøveresulteter fra måling av luftporestruktur i fersk og						
	Betongkeverandør:							
	Norbetong AS							
	Enterprenør:	Enterprenør:						
	AF gruppen 2017	Skanska AS 2009 – 2017 AF gruppen 2017 – 2019						
	8- - F - - - - - - - - - -	Ai gruppen 2017 – 2017						
	Ernst Mørtsell							
	CHECKED BY							
	WP Lead							
	APPROVED BY Kjell Tore Fosså							
	report no. Report No. 07		DATE					
	. P	Орен	2017-11-00					

PROJECT	REPORT NO.	VERSION	1 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	10121

Preface

This report and the related work have been carried out within the research project "Durable advanced Concrete Solutions" (DaCS). The project started in 2015 and is a 4-years' research program with a focus on concrete structures for severe conditions. The main R&D objective is to enable the production of sustainable and durable concrete structures for coastal and offshore arctic applications, considering both production and service life phases.

Multiple researchers from the Norwegian University of Science and Technology, SINTEF and industry partners, together with 3 PhD-students and a number of MSc-students, work on four focus areas:

- WP 1: Early age cracking and crack calculation in design
- WP 2: Production and documentation of frost-resistant concrete
- WP 3: Concrete ice abrasion
- WP 4: Ductile, durable Lightweight Aggregate Concrete

The industry partners are leading multinational companies in the cement and building industry, together with Norwegian engineering companies and offshore industry. Together our aim is to improve the concrete material quality to produce environmentally friendly and durable concrete structures for future arctic offshore and coastal applications. Combining the existing knowledge and experience across industries with the recognized research capabilities of NTNU and SINTEF provides a good basis for both high quality and industry relevant research. Achieving the overall research objectives will strengthen the Norwegian industry's relevance, attractiveness, and competitiveness.

The DaCS project partners are: Kværner AS (project owner), Axion AS (representing Stalite), AF Gruppen Norge AS, Concrete Structures AS, Mapei AS, Multiconsult AS, NorBetong AS, Norcem AS, NPRA (Statens Vegvesen), Norges Teknisk-Naturvitenskapelige Universitet (NTNU), SINTEF Byggforsk, Skanska Norge AS, Unicon AS and Veidekke Entreprenør AS. The project has received a financial contribution from the Norwegian Research Council.

For more information, see <u>https://www.sintef.no/projectweb/dacs/</u>.

KV/ERNER ONTINU SINTEF A The Research Council

CEMENTIR HOLDING

NORCEM

HEIDELBERGCEMENT Group

PROJECT	REPORT NO.	VERSION	2 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	20121

Table of contents

Prefa	ice	2
Table	e of contents	3
1	Fremgangsmåte	4
2	Testresultater utført for SKANSKA i 2009	5
3	Prøveresultater fra Planslip og PF-metoden utført ved NTNU for SKANSKA	9
4	Prøveresultater fra AVA-målinger utført av NorBetong for SKANSKA1	2
5	Laboratorieresultater utført av Mapei for AF-gruppen, Air Void Analyzer (AVA)1	7
6	Sammenstillinger og hovedkonklusjoner2	1

APPENDICES

Reseptdokumentasjon			

PROJECT	REPORT NO.	VERSION	3 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

1 Fremgangsmåte

For måling av porestruktur i fersk betong ble det benyttet en AVA-måler (Air Void Analyzer) utlånt av Mapei.

Prøving av porestruktur i herdet betong ble utført på planslip fra kjerneborret sylindere fra banedekke iht. standard EN 480-11:2005. Dette gjelder målinger utført i 2009.

Alle AVA-målinger ble utført av NorBetong i eget laboratorie ved betongstasasjonen som var rigget inne på flyplassområdet. All prøving av porestruktur i herdet betong er utført for SKANSKA og AF Gruppen iht. ASTM C457. Dette gjelder målinger etter 2017.

I denne rapporten er alle figurer og vurderinger basert på resultatene gitt i tabell: 1-6.

Testresepten som ble benyttet i 2009 er gitt i Tabell 2. Denne ga en synk på 14-16 cm. Betongens støpelighet ble justert under løpende produksjon. Alle planslip i tabell 1 er tatt som kjerneprøver i flyplassdekke på de steder hvor det også var tatt AVA-målinger av fersk betong. Dette gir en god vurdering av korrelasjon mellom AVA-målinger og planslip iht. EN-480:11. I tillegg ble også tradisjonell luftmåler benyttet for alle all betong.

PROJECT	REPORT NO.	VERSION	4 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	
		For review	

2 Testresultater utført for SKANSKA i 2009

Tabell 1

	Sammenligning av prøveresultater for luftporekarakteristikk							
	utført under produksjonen av de nye flyplassdekkene på Ørland Hovedflystasjon							
		Trad. Luftmåler		AVA-analyse			EN 480-11:2005	
Prøve navn/	Utstøpings-	Luftinndhold	Luftinndhold	Spesifikk overflate	Avstandsfaktor	Luftinndhold	Spesifikk overflate	Avstandsfaktor
Følgeseddel nr.	dato	(%)	(%)	(mm-1)	(mm)	(%)	(mm-1)	(mm)
3137	28.07.2009	5,6	5,9	40	0,12	5,5	39	0,12
3189	29.07.2009	5,4	4,5	35	0,15	6,7	32	0,13
3229	30.07.2009	6,0	5,7	48	0,10	7,2	44	0,09
3430	04.08.2009	4,8	5,8	32	0,15	7,9	30	0,11
3458	05.08.2009	5,0	5,3	26	0,19	7,3	35	0,11
3476	05.08.2009	6,1	6,7	39	0,11	8,4	33	0,10
3506	06.08.2009	5,0	5,3	29	0,17	5,0	31	0,16
3577	18.08.2009	4,8	4,3	32	0,17	4,8	32	0,15
3641	19.08.2009	7,5	6,7	45	0,10	4,5	31	0,16
3708	21.08.2009	5,9	4,6	37	0,14	6,0	34	0,13
3771	22.08.2009	5,0	3,9	33	0,18	6,2	34	0,12
3839	23.08.2009	5,0	4,7	28	0,19	5,6	27	0,17
3896	24.08.2009	4,4	4,0	27	0,21	5,0	25	0,19
3938	25.08.2009	4,8	4,4	29	0,18	6,3	28	0,15
3986	25.08.2009	4,0	4,4	33	0,16	4,1	30	0,18
15	Jun-Jul 2009	5,3	5,1	34,3	0,15	6,4	33,0	0,13

	Tabel	l 2. Materialsam	imensetnining
Res.nr. 465059	NorBetong	Dato	Silikafaktor
VF40	Ørlandet	2009	2
Delmaterialer	Leverandør	Kg	Kg / M3
Filsatt vann	Rent	145,4	1000
Anlegg	Norcem	370,0	3150
Silika	Fesil	12,0	2200
Sand 0-8	Hanset	815,0	2710
Pukk 8-16	Nord-Fosen	385,0	2670
Pukk 16-22	Nord-Fosen	605,0	2670
MapePlast P	Mapei	4,7	1200
MapeAir 1:9	Mapei	6,0	1000
Fritt vann	$m = v/(c+k\cdot s)$	Total vekt	Totalt volum
153.7 Liter	0.39	2343.1 Ka	1.010 m ³

Tabell 2 viser materialsammensetningen av betongen. Det ble valgt Anlegg sement uten flyveaske. Som tilsetningsstoff ble MapePlast P valgt.

Bakgrunnen for valg av sementtype og tilsetningsstoff var for å oppnå best mulig porestruktur og tilfredsstillende stabilt luftinnhold.

Reseptdokumentasjon er gitt av resept 1 i appendiks.

Figur 1 (antall prøver langs X-aksen)

Figur 1 viser korrelasjon mellom luftinnhold målt med standard luftbøtte, AVA måling og planslip.

Sammenhengen mellom AVA målinger og luftbøtte viser en klar korrelasjon i luftinnhold for de 15 forskjellige betongblandingene.

Sammenhengen mellom Planslip-målinger og AVA- / luftbøtte viser en noe dårligere korrelasjon og variasjon i luftinnhold.

PROJECT	REPORT NO.	VERSION	5 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Figur 2 (antall prøver langs X-aksen)

Figur 2 viser avstandsfaktor (aF) i fersk og herdet betong målt med AVA og planslip.

Resultatene viser en klar korrelasjon mellom målingene i fersk og herdet betong med de to målemetodene.

Begge metodene gir avstandsfaktorer på samme nivå.

Figur 3 viser spesifikk overflateareal (oA) i fersk og herdet betong målt med henholdsvis AVA og planslip.

Resultatene viser en klar korrelasjon mellom målingene i fersk og herdet betong med de to målemetodene.

Begge metodene gir spesifikk overflateareal på samme nivå.

Figur 3 (antall prøver langs X-aksen)

Sammenstilling av Figur 1-3 viser at det er meget god korrelasjon mellom AVA-målinger i fersk betong og målinger i herdet betong ved bruk av planslip iht. EN 480-11.

Figur 4 viser sammenhengen mellom luft i volum % og avstandsfaktor (aF) målt i fersk betong med AVA måler.

Økende luftinnhold gir lavere avstandsfaktor.

Korrelasjonen mellom luftinnhold og avstandsfaktor er meget god for de 15 betongblandingene.

Figur 4 (antall prøver langs X-aksen)

PROJECT	REPORT NO.	VERSION	6 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Figur 5 viser sammenhengen mellom luft i volum % og avstandsfaktor (aF) målt i herdet betong på planslip iht. EN 480-11.

Økende luftinnhold gir lavere avstandsfaktor.

Korrelasjonen mellom luftinnhold og avstandsfaktor er meget god for de 15 betongblandingene.

Figur 5 (antall prøver langs X-aksen)

Sammenstilling av resultatene i figur 4 og 5 viser at det er god korrelasjon mellom luftinnholdet i både fersk og herdet betong mot endring i avstandsfaktor. Økning i luftinnholdet i betongen gir redusert avstandsfaktor.

Ser vi på trendlinjene for AVA målinger i fersk betong så gir 6 % luft en avstandsfaktor på ca 0,13 mm og 4,5 % luft gir en avstandsfaktor på ca 0,18 mm.

Tilsvarende trendlinje-verdier fra planslip i herdet betong gir for 7 % luft en avstandsfaktor på ca 0,10 mm og 5,0 % luft gir en avstandsfaktor på ca 0,17 mm.

Figur 6 (antall prøver langs X-aksen)

Figur 7 (antall prøver langs X-aksen)

Figur 6 viser sammenhengen mellom spesifikk overflate (oA) og luft i volum % målt med AVA-måler i fersk betong.

Økende luftinnhold gir større spesifikk overflateareal.

Korrelasjonen mellom luftinnhold og spesifikk overflateareal er meget god for de 15 betongblandingene.

Figur 7 viser sammenhengen mellom spesifikk overflate (oA) og luft i volum % målt i herdet betong på planslip iht. EN 480-11.

Økende luftinnhold gir større spesifikk overflateareal.

Korrelasjonen mellom luftinnhold og spesifikk overflateareal er meget god for de 15 betongblandingene.

PROJECT	REPORT NO.	VERSION	7 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Sammenstilling av resultatene i figur 6 og 7 viser at det er god korrelasjon mellom luftinnholdet i både fersk og herdet betong mot endring i spesifikk overflateareal. Økning i luftinnholdet i betongen gir større spesifikk overflateareal.

Ser vi på trendlinjene for AVA målinger i figur 6 for fersk betong så gir ca 4,5 % luft en spesifikk overflateareal på ca 30 (mm⁻¹) og ca 6 % luft gir en spesifikk overflateareal på ca 40 (mm⁻¹).

Tilsvarende trendlinje-verdier fra planslip i figur 7 for herdet betong gir ca 5 % luft spesifikk overflateareal på ca 27 (mm⁻¹) og ca 7,2 % luft gir en spesifikk overflateareal på ca 37 (mm⁻¹).

Figur 8 (antall prøver langs X-aksen)

Figur 8 viser sammenhengen mellom spesifikk overflate (oA) og avstandsfaktor (aF) målt i herdet betong på planslip iht. EN 480-11.

Reduksjon i avstandsfaktor gir større spesifikk overflateareal.

Korrelasjonen mellom avstandsfaktor og spesifikk overflateareal er meget god for de 15 betongblandingene.

Figur 9 viser sammenhengen mellom spesifikk overflate (oA) og avstandsfaktor (aF) målt med AVA-måler i fersk betong.

Reduksjon i avstandsfaktor gir større spesifikk overflateareal.

Korrelasjonen mellom avstandsfaktor og spesifikk overflateareal er meget god for de 15 betongblandingene.

Figur 9 (antall prøver langs X-aksen)

Sammenstilling av resultatene i figur 8 og 9 viser at det er god korrelasjon mellom avstandsfaktor i både fersk og herdet betong mot endring i spesifikk overflateareal. Reduksjon av avstandsfaktor i betongen gir større spesifikk overflateareal.

Ser vi på trendlinjene for AVA målinger for fersk betong i figur 9 så gir en avstandsfaktor på ca 0,18 en spesifikk overflateareal på ca 30 (mm-1) og en avstandsfaktor på ca 0,13 gir en spesifikk overflateareal på ca 38 (mm-1).

Tilsvarende trendlinje-verdier fra planslip i figur 8 for herdet betong gir en avstandsfaktor på ca 0,10 mm en spesifikk overflateareal på ca 37 (mm-1) og en avstandsfaktor på ca 17 mm gir en spesifikk overflateareal på ca 27 (mm-1)

Oppsummering:

Resultatene fra Tabell 1 gjenngitt i Figurene 1-9 viser at det er en klar sammenheng mellom måling av porestruktur i fersk betong ved bruk av Air Void Analyzer (AVA) og porestruktur i herdet betong ved bruk av planslip fra cylinder etter standardisert metode iht. EN 480-11:2005.

PROJECT	REPORT NO.	VERSION	9 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	0 01 2 1

3 Prøveresultater fra Planslip og PF-metoden utført ved NTNU for SKANSKA

Materialsammensetning er gitt i resept 2 i appendiks.

Tabell 3.	"Collection of te	est reports	Image	analysis	and F	PF-test	of harden	ed conc	rete"
				(av An	drei Sh	pak_Date.	: 07.08.2	2017

IMA (ASTM C457)		P	F		
Sample IMA	Air content, % IMA	Specific surface, mm-1	Powers Spacing Factor, mm	Sample PF	Macro porosity, % PF
A2-2 IMA1	3,70 %	19,909	0,285	A2-2 PF1	3,5 %
Y-4 IMA1	3,88 %	22,416	0,247	Y-4 PF1	4,1 %
Y-6 IMA1	4,00 %	21,790	0,251	Y-6 PF1	3,6 %
Y-4 IMA2	4,11 %	22,615	0,238	Y-4 PF3	5,0 %
A2-2 IMA2	4,41 %	24,776	0,210	A2-2 PF3	3,9 %
A2-4 IMA1	4,68 %	23,948	0,212	A2-4 PF1	6,3 %
Y-3 IMA2	4,69 %	27,211	0,186	Y-3 PF3	4,8 %
A1-1 IMA2	4,81 %	22,971	0,218	A1-1 PF3	5,3 %
A1-3 IMA1	4,92 %	31,261	0,158	A1-3 PF1	5,1 %
R4 IMA2	4,93 %	25,490	0,194	R4 PF4	4,8 %
A1-2 IMA2	4,99 %	25,700	0,192	A1-2 PF3	4,3 %
A2-3 IMA1	5,04 %	27,532	0,178	A2-3 PF1	5,1 %
A2-4 IMA2	5,10 %	27,179	0,179	A2-4 PF3	6,2 %
A2-1 IMA1	5,12 %	34,789	0,140	A2-1 PF1	5,9 %
A2-1 IMA2	5,13 %	27,546	0,176	A2-1 PF3	6,7 %
R4 IMA1	5,21 %	24,229	0,199	R4 PF1 cracke	4,9 %
Y-6 IMA2	5,24 %	30,660	0,157	Y-6 PF3	6,4 %
Y-5 IMA1	5,36 %	25,189	0,189	Y-5 PF1	4,4 %
A2-3 IMA2	5,37 %	32,173	0,147	A2-3 PF3	5,2 %
Y-2 IMA2	5,38 %	24,718	0,192	Y-2 PF3	6,3 %
R1 IMA1	5,38 %	22,080	0,215	R1 PF1	6,5 %
A1-2 IMA1	5,47 %	22,236	0,211	A1-2 PF1	3,3 %
Y-5 IMA2	5,53 %	28,518	0,164	Y-5 PF3	5,1 %
Y-3 IMA1	5,54 %	27,872	0,168	Y-3 PF1	4,2 %
Y-2 IMA1	6,06 %	19,244	0,233	Y-2 PF1	5,6 %
R3 IMA1	6,10 %	23,598	0,189	R3 PF1	5,5 %
Y-1 IMA2	6,14 %	25,039	0,177	Y-1 PF3	6,4 %
R3 IMA2	6,26 %	22,121	0,199	R3 PF3	6,1 %
R2 IMA2	6,33 %	31,224	0,140	R2 PF3	7,2 %
Y-1 IMA1	6,37 %	22,466	0,194	Y-1 PF1	4,9 %
R1 IMA2	6,51 %	14,620	0,294	R1 PF3	7,1 %
A1-1 IMA1	6,92 %	29,321	0,138	A1-1 PF1	5,2 %
R2 IMA1	8,01 %	26,734	0,129	R2 PF1	5,7 %
A1-3 IMA2	8,18 %	23,859	0,141	A1-3 PF3	5,4 %

PROJECT	REPORT NO.	VERSION	0 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	9 01 2 1

Figur 10

Figur 10 viser sammenstillingen av resultatene i kolonne 2 og 3 i Tabell 3.

Økning i luftinnhold gir ingen klar forbedring av spesifikk overflate .

Korrelasjon mellom luftinnhold og spesifikk overflate er ikke veldig god da spredningen er stor.

Figur 11 viser sammenstillingen av resultatene i kolonne 3 og 4 i Tabell 3.

Endring i avstandsfaktor gir en klar endring i spesifikk overflateareal.

Korrelasjon mellom avstandsfaktor og spesifikk overflate er veldig god.

Figur 12 viser sammenstillingen av resultatene i kolonne 2 og 4 i Tabell 3.

Økning i luftinnhold gir ingen klar forbedring i avstandsfaktor.

Korrelasjon mellom luftinnhold og avstandsfaktor er ikke veldig god da spredningen er stor.

PROJECT	REPORT NO.	VERSION	10 of 21
DACS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Figur 11

Figur 13 viser sammenstillingen av resultatene i kolonne 2 og 6 i Tabell 3.

Endring i luftinnhold gir en klar endring i makro porøsitet.

Korrelasjon mellom lufinnhold og makroporøsitet er god.

PROJECT	REPORT NO.	VERSION	11 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

4 Prøveresultater fra AVA-målinger utført av NorBetong for SKANSKA

Alle AVA-målinger er utført av Norbetong's mobile blandeanlegg som var rigget inne på Ørlandet flystasjon. AVA-målingene ble benyttet for å oppnå tilfredsstillende porestruktur i fersk betong, dette for å sikre at det ble oppnådd tilstrekkelig luftporestruktur i herdet betong.

Kravet til luftporestruktur var definert ved luftboblenes spesifikke overflateareal og avstandsfaktor.

Både luftmålinger med luftbøtte og AVA-målinger ble utført på blandeanlegget før betongen ble levert til SKANSKA ute på anlegget.

Kritiske faktorer ved produksjon av betongen var knyttet til stabil konsistens og luftinnhold. Stabilt tilslag med tilnærmet konstant finstoffinnhold var svært viktig ved valg av tilslagsleverandør.

For å få frem klare sammenhenger mellom betongens luftinnhold i volum %, luftporestrukturens spesifikk overflateareal og avstandsfaktor så ble alle måleresultatene organisert etter økende luftinnhol målt med luftbøtte.

For å oppnå tilfredsstillende AVA-målinger var det særdeles viktig at prøveuttaket ble utført korrekt og at AVA-måleren ikke ble utsatt for vibrasjoner mens målingene pågikk.

PROJECT	REPORT NO.	VERSION	12 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Tabell 4a. AVA analyse NorBetong / SKANSKA				
Mix nr.	Air Content	AVA Air	Specific	Spacing
	(%)	(%)	surface mm-1	factor mm
170405-2	3,5	2,4	22,4	0,326
170424-3	3,8	1,8	24,2	0,351
170504-4	4,0	2,5	21,2	0,338
170426-2	4,2	2,1	26,4	0,297
170504-3	4,2	1,1	18,8	0,538
170405-4	4,4	3,0	27,9	0,238
170424-2	4,4	3,8	17,1	0,351
170427-2	4,4	2,5	24,1	0,296
170503-3	4,5	2,4	22,1	0,330
170508-1	4,5	1,9	24,6	0,326
170508-6	4,5	2,7	25,3	0,275
170511-3	4,6	1,8	26,6	0,311
170511-5	4,6	2,4	27,4	0,267
170405-1	4,7	2,8	34,1	0,199
170508-4	4,7	1,1	20,9	0,492
170407-3	4,8	2,8	25,9	0,265
170427-3	4,8	2,3	28,0	0,266
170504-5	4,8	3,2	28,4	0,228
170515-2	4,8	4,8	20,6	0,261
170419-1	4,9	3,0	20,0	0,332
170419-2	4,9	2,9	23,2	0,288
170503-4	4,9	2,3	24,0	0,308
170330-1	5,0	4,1	13,4	0,427
170407-4	5,0	3,2	23,7	0,271
170424-5	5,1	3,8	21,7	0,278
170504-2	5,2	3,3	25,3	0,250
170505-1	5,2	3,1	24,3	0,267
170509-3	5,2	2,9	30,1	0,224
170510-3	5,2	4,5	30,1	0,184
170516-2	5,2	6,1	25,9	0,185
170523-3	5,2	2,4	22,8	0,321
170523-4	5,2	3,8	34,7	0,172
170427-5	5,3	2,7	26,3	0,265
170508-5	5,3	2,1	22,2	0,352
170511-4	5,3	5,3	28,6	0,180
170511-6	5,3	3,7	30,0	0,202
170330-2	5,4	4,0	14,0	0,414
170502-1	5,4	3,3	20,9	0,306
170508-3	5,4	2,3	18,5	0,401
170515-1	5,4	3,1	20,3	0,323

Materialsammensetning for tabell 4a og 4b er gitt av resept 2 i appendiks.

Prøver er tatt ut på betongstasjon (NorBetong / SKANSKA)

PROJECT DaCS - WP 2 Production and documentation of frost durable concrete	REPORT NO. Report No. 07	VERSION For review	13 of 21

	100000 1011	0.15011015011111		0.1.8 / 0.101.101.001
170424-4	5,5	2,8	23,0	0,299
170427-1	5,5	2,6	23,2	0,305
170508-7	5,5	3,9	34,1	0,173
170509-1	5,5	3,2	29,0	0,221
170331-1	5,6	6,0	17,3	0,275
170419-3	5,6	2,9	23,9	0,281
170424-6	5,6	4,1	21,9	0,266
170521-1	5,6	5,0	24,3	0,216
170521-2	5,7	5,1	33,1	0,157
170523-2	5,7	4,4	23,6	0,236
170407-2	5,8	4,5	22,5	0,247
170508-2	5,8	3,0	19,6	0,336
170511-2	5,8	4,4	28,6	0,195
170419-5	6,0	3,7	30,0	0,201
170428-2	6,0	2,8	29,2	0,233
170504-1	6,0	1,9	32,0	0,255
170509-2	6,0	3,9	24,8	0,237
170426-1	6,2	4,4	22,8	0,246
170510-1	6,4	2,8	25,6	0,266
Prøvene er tatt	ut på byggeplas	S		
170515-3	6,4	3,6	21,4	0,286
170516-1	6,4	5,6	27,8	0,180
170523-1	6,4	3,4	25,0	0,250
170405-6	6,5	5,1	29,2	0,180
170424-1	6,5	4,4	15,3	0,366
170428-1	6,5	3,8	29,7	0,202
170518-1	6,5	5,3	23,8	0,215
170519-1	6,5	6,4	22,2	0,211
170519-2	6,5	4,3	20,5	0,276
170331-2	6,8	5,7	20,0	0,243
170419-6	7,0	4,4	30,4	0,184
170407-1	7,4	5,2	28,6	0,182
170403-1	7,5	4,7	23,5	0,229
170405-5	7,5	6,0	26,5	0,180
170403-2	8,0	4,9	27,9	0,189
170403-3	8,0	5,1	28,4	0,182
170512-1	9,2	5,6	25,6	0,196
170512-2	10,0	10,6	27,8	0,112

Tabell 4b. Fortsettelse AVA analyse NorBetong / Skanska

Resultatene i Tabell 4a og 4b er hentet fra rapport:

«Air Void Analyzer, Results From Ørlandet KampFlyplass»

Elisabeth Leite Skare | 17.08.17

Tabell 4a og 4b er analyseresultater som er utført i Norbetong's felt-laboratoria inne på Ørlandet KampFlyplass i perioden 2016-2018. AVA måler var utlånt av Mapei AS og tidvis leid fra NTNU.

PROJECT	REPORT NO.	VERSION	14 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Figur 14 (antall prøver langs X-aksen)

Figur 14 viser sammenstillingen av resultatene i kolonne 2 og 3 i Tabell 4a + 4b. Korrelasjon mellom lufinnhold målt med luftbøtte og luftinnhold målt med AVA er meget god.

Luftinnholdet målt med AVA ligger i gjennomsnitt 2 % lavere enn lufinnhold målt med luftbøtte.

Figur 15 (antall prøver langs X-aksen)

Figur 15 viser sammenstillingen av resultatene i kolonne 2 og 5 i Tabell 4a + 4b.

Korrelasjon mellom lufinnhold målt med luftbøtte og avstandsfaktor målt med AVA er meget god.

Øket luftinnholdet gir redusert avstandsfaktor, jfr. trendlinjer.

PROJECT	REPORT NO.	VERSION	15 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Figur 16 (antall prøver langs X-aksen)

Figur 17 (antall prøver langs X-aksen)

Figur 18 (antall prøver langs X-aksen)

Figur 16 viser sammenstillingen av resultatene i kolonne 2 og 4 i Tabell 4a + 4b.

Korrelasjon mellom lufinnhold målt med luftbøtte og spesifikk overflateareal målt med AVA er ikke veldig god.

Øket luftinnholdet gir noe øket spesifikk overflateareal, jfr. trendlinjer.

Figur 17 viser sammenstillingen av resultatene i kolonne 4 og 5 i Tabell 4a + 4b.

Korrelasjon mellom spesifikk overflateareal og avstandsfaktor målt med AVA er meget god.

Redusert avstandsfaktor gir øket spesifikk overflateareal, jfr. trendlinjer.

Figur 18 viser korrelasjonen mellom luftinnhold målt med luftbøtte og luftinnhold måplt med AVA-måler.

Årsaken til den relativt lave R²-verdien skyldes at det er stor spredning i resultatene i luftinnhold målt med AVA-måleren og luftbøtte.

	PROJECT DaCS - WP 2 Production and documentation of frost durable concrete	REPORT NO. Report No. 07	VERSION For review	16 of 21
--	---	-----------------------------	-----------------------	----------

5 Laboratorieresultater utført av Mapei for AFgruppen, Air Void Analyzer (AVA)

			Tabell	5a. AVA-m	ålinger AF	' Gruppen /	/ Mapei (La	iboratorie)
Lab AF / Mapei	Ref.	2	3	4	5	6	7	8
Mapeair 25 (1:9), %	0,7	0,6	0,55	0,45	0,45	0,45	0,45	0,55
Dynamon Xtend U-100, %	0,9	0,85	0,9	0,9	0,9		0,9	
Synk 5 min, cm	220	240	240	240	220	225	240	240
Utbredelse 5 min, cm	52	500	515	520	510	480	560	530
Luft 5 min,%	3,8	7,5	6,4	4,4	5,6	5,2	5	7,5
Luft 45 min,%	8,5			6,4	8	8,5	8	9
Densitet 5 min, g	2365	2228	2240	2358	2302	2315	2325	2215
Densitet 45 min, g	2178			2286		2220		2160
Temo. 5 min, oC	21,4	21,3	21,5	21,6	22	19,8	21,5	20,5
AVA 10 min								
Air concrete, %	10,3	8,7	7,7	3,8	6	5	3,6	8,6
Air Pasta, %	33	27,3	23,9	11,3	18,1	15,2	10,6	27,1
Specific surface (>25 mm-1)	21,5	20,8	20,3	24,4	23,2	18,3	22,2	20,8
Spacing Factor (<0.200mm)	0,144	0,178	0,208	0,245	0,209	0,286	0,277	0,18
AVA 45 min								
Air concrete, %				8,1	9,7	10,5	9,4	10,7
Air Pasta, %				25,2	30,1	33,5	29,6	34,2
Specific surface (>25 mm-1)				19,2	22,3	25,1	18,7	21
Spacing Factor (<0.200mm)				0,21	0,152	0,157	0,183	0,142

Tabell 5a. AVA-målinger AF Gruppen / Mapei (Laboratorie

Tabell 5b. AVA-målinger AF Gruppen / Mapei (Laboratorie)

Air AVA (%)	Specific surface (mm- 1)	Spacing Factor (mm)
3,6	22,2	0,277
3,8	24,4	0,245
5,0	18,3	0,286
6,0	23,2	0,209
7,7	20,3	0,208
8,1	19,2	0,210
8,6	20,8	0,180
8,7	20,8	0,178
9,4	18,7	0,183
9,7	22,3	0,152
10,3	21,5	0,144
10,5	25,1	0,157
10,7	21,0	0,142

Tabell 5b er en sammenstilling av resultatene fra Tabell 5a.

Laboratorieprogrammet var et ledd i AF Gruppen's innledende dokumentasjon av betongens porestruktur for den materialsammensetningen av betongresept som skulle benyttes på banedekke på Ørlandets KampFlyplass.

Formålet med prøveprogrammet var å unngå bruk av AVA-måler under løpende produksjon av betongen.

PROJECT	REPORT NO.	VERSION	17 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Figur 19 viser sammenstillingen av resultatene i kolonne 1 og 2 i Tabell 5b.

Endring i luftinnhold gir ingen klar endring i spesifikk overflateareal.

Det er ingen klar korrelasjon mellom lufinnhold og spesifikk overflateareal.

Figur 20 viser sammenstillingen av resultatene i kolonne 1 og 3 i Tabell 5b.

Endring i luftinnhold gir en klar endring i avstandsfaktor. Økende lufinnhold gir redusert avstandsfaktor.

Det er en klar korrelasjon mellom lufinnhold og avstandsfaktor.

Figur 20

Figur 21 viser sammenstillingen av resultatene i kolonne 2 og 3 i Tabell 5b.

Reduksjon i avstandsfaktor gir en økning i spesifikk overflateareal.

Det er klar korrelasjon mellom reduksjon i anstandsfaktor og økning i spesifikk overflateareal.

Figur 21

Oppsummering av resultater i tabell 5a / 5b.

Resultatene fra tabell 5a / 5b gir ingen klar sammenheng mellom økning i luftinnhold og endring i spesifikk overflateareal. En reduksjon av avstandsfaktor (mm) gir en klar økning i spesifikk overflateareal (mm⁻¹).

PROJECT DaCS - WP 2 Production and documentation of frost durable concrete	REPORT NO. Report No. 07	VERSION For review	18 of 21

								1	11	1	
Spesimens	ID	4A-a	4A-b	4B-a	2-b	2-a	5-a	5-b	4B-b	3-a	3-b
Air IMA	(%)	4,44	4,52	6,82	6,99	7,11	7,19	7,66	7,79	7,95	10,07
Specific surface	(MM-1)	26,43	28,13	20,38	19,12	17,9	20,78	22,1	23,28	20,73	21,38
Spacing factor	(mm)	0,199	0,185	0,206	0,214	0,224	0,19	0,168	0,156	0,171	0,128

Figur 22 (antall prøver langs X-aksen)

Figur 23 (antall prøver langs X-aksen)

Figur 24 (antall prøver langs X-aksen)

PROJECT DaCS - W

Figur 22 viser sammenstillingen av
resultatene i rad 2 og 3 i Tabell 6.

Det er ingen klar sammenheng mellom økning i lufinnhold og endring spesifikk overflateareal.

Det er ingen klar korrelasjon mellom lufinnhold og spesifikk overflateareal.

Figur 23 viser sammenstillingen av resultatene i rad 2 og 4 i Tabell 6.

Økning i luftinnhold gir redusert avstandsfaktor som forventet.

Det er ingen klar korrelasjon mellom lufinnhold og avstandsfaktor, men en god indikasjon.

Figur 24 viser sammenstillingen av resultatene i rad 3 og 4 i Tabell 6.

Redusert avstandsfaktor gir en klar økning i spesifikk overflateareal som forventet.

Det er god korrelasjon mellom endring i spesifikk overflateareal og avstandsfaktor.

P 2 Production and documentation of frost durable concrete	REPORT NO. Report No. 07	VERSION For review	19 of 21

Oppsummering av resultater i tabell 6.

Resultatene i tabell 6 viser at det er dårlig korrelasjon mellom variasjon i luftinnhold (%) og endring i spesifikk overflateareal målt (mm $^{-1}$). Øket luftinnhold gir ingen klar endring i spesifikk overflateareal.

Korrelasjon mellom endring i luftinnhold og avstandsfaktor (mm) er god. Øket luftinnhold gir redusert avstandsfaktor. Tilsvarende er korrelasjonen mellom avstandsfaktor og spesifikk overflateareal god. Redusert avstandsfaktor gir øket spesifikk overflateareal (mm⁻¹).

Hovedkonklusjonen er at øket luftinnhold gir redusert avstandsfaktor og tilhørende øket spesifikk overflateareal jfr. Figur 23 for luftinnhold og avstandsfaktor og figur 24 for avstandsfaktor og spesifikk overflateareal.

PROJECT	REPORT NO.	VERSION	20 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

6 Sammenstillinger og hovedkonklusjoner

Resultatene fra 2009 hvor det ble benyttet standard Anlegg-sement i kombinasjon med P-stoff viser en klar sammenheng mellom målinger utført med AVA-måler og planslip iht. EN 480-11:2005. Økende luftinnhold medfører redusert avstandsfaktor og økende spesifikk overflateareal.

Resultatene etter 2009 hvor det ble benyttet Anlegg-Fa sement i kombinasjon med polymerbasert SPstoff viser tilsvarende sammenheng som resultatene fra 2009. Det totale luftinnholdet måtte økes for å oppnå tilfredsstillende porestruktur.

Det er oppnådd god sammenheng mellom luftinnhold målt på planslip iht. ASTM C457 og makro porøsitet målt med PF-metoden.

Bruk av AVA-måler i felt er betydelig mere krevende enn under stabile forhold i et laboratorie. AVAmåler er best egnet til bruk ved utvikling av betongresept før løpende produksjon starter. Tilbakemeldinger fra entreprenørene er at planslip gir noe bedre resultater enn AVA-målinger. Stabilitet i betongens matriks-sammensetning er svært avgjørende for variasjon i porestrukturen.

PROJECT	REPORT NO.	VERSION	21 of 21
DaCS - WP 2 Production and documentation of frost durable concrete	Report No. 07	For review	

Appendiks. Reseptdokumentasjon

									Resept 1
Res.nr. 465059		Ørlandet	Dato	Synk	Pasta volum	Matriks volum	Luftinnhold	Utført av:	E.Mørtsell
MF40	0	0,0 % FA	22/10-19	20 cm	336,6 Liter	360,4 Liter	6 %	Godkjent av:	
Betegnelse		Navn	Antall Kg	Kg/m ³	Vekt %	Vekt %	% Cl av	% Reaktive	Vekt %
Delmaterialer		Leverandør	Delmaterial	Densitet	fukt	Alkalier	Delmatrial	bergarter	Absorbert
Tilsatt vann	k	Rent	145,4	1000	100				
Standard FA	1,00	Norcem	0,0	2950	0	1	0,08		
Anlegg Std	1,00	Norcem	370,0	3150	0	0,55	0,08		
Flyveaske	0,70	Norcem	0,0	2300	0	5	0,02		
Silika	2,00	Fesil	12,0	2200	0	0,46	0,03		
Sand 0-8		Hemne	0,0	2690	0				0,4
Sand 0-8		Hanset	815,0	2710	0		0,005	5,9	0,4
Pukk 8-16		Nord-Fosen	385,0	2670	0		0,001	5	0,5
Pukk 16-24		Nord-Fosen	605,0	2670	0		0,001	5	0,5
MapePlast P		Mapei	4,7	1200	60	6	0,001		
SR-N		Mapei	0,0	1060	82	2	0,01		
Mapeair(19)		Mapei	6,0	1000	90	0	0,005		
Fritt vann		$m = \sqrt[n]{(c+k \cdot s)}$	Total vekt	Totalt volum	Totalt vann	Vekt alkalier	Cl av klinker	Reakt. berg.	Abs. vann
153,7 Kg		0,39	2343,1 Kg	1,010 m ³	161,9 Kg	2,4 Kg	0,1 %	5,4 %	8,2 Kg
		Siktekurver, ISO-mm			% and $i =>$	0,0 %	45,2 %	21,3 %	33,5 %
0	- <u>-</u>	<u> </u>	<u>1</u> 9 <u>1</u> 9		totalkurve	Sand 0-8	Sand 0-8	Pukk 8-16	Pukk 16-24
20					[32] = 00,0	0,0	0,0	0,0	0,0
ž 30				totalkurve	[16] = 33,0	0,0	0,0	18,0	87,0
× 40	+		/	Sand 0-8	[8] = 54,5	1,2	1,8	96,0	99,0
60 100				Sand 0-8	[4] = 61,9	14,8	17,2	98,0	99,0
70			<i>-↓</i> ↓	Pukk 8-16	[2] = 68,0	29,6	30,9	98,0	99,0
80	, M		-		[1] = 75,6	46,8	47,7	98,0	99,0
100	8			P 000 10-24	[0,5] = 83,8	64,7	65,9	98,0	99,0
100 25	ý .	\$ ^ 2 * °	10 mg		[0,25] = 92,0	82,4	83,5	98,0	99,5
8× 0,		Maskevidde i mm			[0,125] = 96,5	93,4	93,0	99,0	99,5
		Maskevidderinni			[bunn] = 100,0	100	100	100	100
					Fm = 5,17	Fm = 2,86	Fm = 2,94	Fm = 6,54	Fm = 7,31

Resept 2

									1
B45MF40		NorBetong	Dato	Synk	Pasta volum	Matriks volum	Luftinnhold	Utført av:	S.E.Nisja
D22 F-Dekke	259	16,6 % FA	02/06-17	22 cm	356,6 Liter	377,9 Liter	5 %	Godkjent av:	E.Mørtsell
Betegnelse		Navn	Antall Kg	Kg/m ³	Vekt %	Vekt %	% Cl av	% Reaktive	Vekt %
Delmaterialer		Leverandør	Delmaterial	Densitet	fukt	Alkalier	Delmatrial	bergarter	Absorbert
Tilsatt vann	k	Rent	162	1000	100				[
Anlegg FA	1,00	Norcem	407,3	3020	0	0,6	0,085		
Std.FA	1,00	Norcem	0	2990	0	1,5	0,085		
Flyveaske	0,70	Norcem	0	2300	0	5	0,02		
Silika	2,00	Fesil	10,4	2200	0	1	0,01		
Sand 0-8		Hanset	867	2700	0		0,001	4,72	0,5
Sand 0-2		Ramlo, Stokke	0	2710	0		0,001	0	0,4
Pukk 8-16		NordFosen	310	2680	0		0,001	0	0,5
Pukk 16-24		NordFosen	551	2680	0		0,001	0	0,5
MapePlast P		Rescon	1,7	1200	60	6	0,001		
Xtend-U100		Rescon	2,17	1070	75	2,5	0,05		
Mapeair(19)		Rescon	2,4	1000	99,6	0,5	0,01		
Fritt vann		$m = \sqrt[v]{(c+k \cdot s)}$	Total vekt	Totalt volum	Totalt vann	Vekt alkalier	Cf av klinker	Reakt. berg.	Abs. vann
167,0 Kg		0,39	2313,9 Kg	1,000 m ³	175,6 Kg	2,7 Kg	0,1 %	2,4 %	8,6 Kg
		Siktekurver, ISO-mm			% andel i =>	50,2 %	0,0 %	17,9 %	31,9 %
0					totalkurve	Sand 0-8	Sand 0-2	Pukk 8-16	Pukk 16-24
10					[32] = 00,0	0,0	0,0	0,0	0,0
× 30				totalkurve	[16] = 29,6	0,0	0,0	10,4	87,0
[★] 40		··┼À́,╃́	/		[8] = 50,2	4,3	2,4	91,8	99,0
50			<u> </u>		[4] = 60,5	23,0	10,3	97,0	99,0
70	- /		·/ /	Pukk 8-16	[2] = 67,6	37,1	20,9	97,2	99,0
× 80	<u>, </u>		<u>/↓</u>	Pukk 16 24	[1] = 75,6	53,0	38,4	97,4	99,0
90	-7	0		PUKK 10-24	[0,5] = 84,5	70,7	60,2	97,6	99,0
.un 25	Ť	\$ Y Y * +	10 32		[0,25] = 92,7	86,6	75,7	97,9	99,5
Br O'r	O,	Maskevidde i mm			[0,125] = 96,7	94,3	88,7	98,3	99,5
		Maskeviddermill			[bunn] = 100,0	100	100	100	100
					Fm = 5,09	Fm = 3,22	Fm = 2,52	Fm = 6,38	Fm = 7,31