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Popular science summary (Public)

Structural Health Monitoring (SHM) is defined as the process of acquiring and analysing data from on-
board sensors to evaluate the health of the structures. A technology still under development, it offers
significant savings for the maintenance of structures, by replacing the current time-scheduled inspec-
tions, by condition-maintenance inspections, only when needed. Fibre-optic sensors (FOS) are very
attractive as sensors for SHM applications; its size is very small, the optical fibre has a diameter of
150 microns, so it can be embedded within the composite material during manufacturing. Without
doubt they are the best technical choice for strain measurements. But damage occurrence at the struc-
ture cannot be directly derived from strain measurements; local changes are intense at the crack tip,
but smooth out very quickly. Global changes in the strain field caused by a small damage, such as a
crack, delaminations or debondings are quite small, easily hidden by the equipment noise and environ-
mental disturbances. Several local and global SHM techniques have been proposed, in order to derive
damage information from strain measurements. Local SHM techniques are more sensitive, and better
developed, but they are restricted to damages located at the area covered by the sensors. This paper
deals with global methods, which are supposed to detect the damage anywhere in the structure. Two
methods are proposed, and the concept is demonstrated on a bridge beam.

Technical summary

The goal of this task has been to develop algorithms to compare the strain data obtained on a pristine
structure, with the data flow generated during the service life of the structure. The most classical al-
gorithm is PCA (Principal Component Analysis). It is a robust algorithm that does not require any hy-
pothesis about the damage type, and produce for each new data set a ‘Damage Index’, or deviation
among the new data and those from the pristine structure. During this project, refinements have been
introduced to improve the sensitivity of the technique to small damages. Another algorithm, based
on Recurrent Neural Networks (RNN) has been developed and proven with the data simulated for the
bridge beam. The performances of the NN are strongly linked to the quality of data, both from the
pristine and from the damaged structures; when the number of simulated cases is adequately large,
the predictions are quite accurate, with a capability to identify and to classify the damages. It is worthy
to clarify that both algorithms are included among the Data-driven group; they do not require any know-
ledge of the physics of the system. Nevertheless, a physical model is needed for the simulation, based
on Finite element Modelling (FEM), to produce the strain data at the assumed positions of the sensors.
It allow an optimization of the sensor network, and a verification of the algorithms without the need to
run real experiments.
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Introduction

Damage is a local change in the material’s properties or at the structure boundaries that degrades struc-
tural performance. This aspect cannot be directly measured, so damage detection requires the meas-
urement of a physical parameter affected by damage presence such natural frequencies. Although the
changes induced by damage appearance in the strain field are obvious (intense in the local field, and
smaller in the global strain map), damage detection and location by a sparse sensor strain network re-
quires a damage detection algorithm which provide an accurate detection of damage presence, location
and quantification.

Among the strain sensors, Fiber Optic Sensors (FOS) are very attractive as sensors for SHM applica-
tions on aerospace or civil composite structures, because optical fibers have very small size, low
weight and multiplexing capabilities (several sensors on the same optical fibre). Additionally, they can
be embedded within the composite material during manufacturing. Other benefits of FOS are EMI/RFI
immunity, long term stability, wide temperature range and very long cabling if needed because of the
low attenuation.

Some damage detection algorithms have been studied using simulation with a Finite Element Model
(FEM) of a structure, particularly, a beam. In this model, some element rows are used as distributed
measurement FOS, with which the deformations needed to perform the damage detection algorithms
have been extracted.

1.1 SHM methods based on strain measurements

Strain measurements are very popular for damage detection strategies. Due to the limited spatial influ-
ence of the changes induced in the strain field, several applications are based on positioning the sensor
in the expected damage area, like the bonding line between the stringer and the skin on composite
structures. In the case of distributed sensing networks, larger measuring areas are possible. Although
strain sensors have high maturity, a key issue to determine the damage straight from strain measure-
ments is to compensate for the unknown influence of external loads and temperature on the strain
field. This, together with the limited sensing area, are currently the major limitations to implement this
technique on field applications.

Strain sensors are commonly used in vibration-based methods, which inherently have the advantage
of a global survey of the whole structure, and the limitation that damage needs to be large enough to
modify the modal shapes. Other widespread algorithms are Principal Component Analysis (PCA). PCA
is a simple and nonparametric method of extracting relevant information directly from strain data. It is
done by reducing a complex dataset to a lower dimension, revealing some hidden structure/patterns
or abnormal data. This is done by converting a set of data of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. In the same line, Support Vector
Machines (SVMs) classification learning is a powerful paradigm to investigate the inverse input-output
relationship of a specific problem according to some available and representative dataset.

Due to its intrinsic nature, machine learning algorithms match perfectly with SHM applications, as
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they are designed to find natural patterns in data that generate insight. Different applications can be
found in the bibliography. Initially, Artificial Neural Networks (ANN) were used to determine changes in
vibration or in time series. However, new developments in Recurrent Neural Networks (RNN) provide
the capability to detect damage presence based on the structure strain field. Fatigue cracks and the
distortion of the FBG spectrum have previously been studied.

The following Figure 1.1.1 shows the block diagram used for a real case or when you have a model.

On the physical
structure. Define
Sensors Position

¢

(a) Algorithm to process experimental data

1\

POD
Propose Sensors Adequate?

Number and Position

(b) Algorithm for a strain-based SHM system to evaluate multiple damage scenarios

Figure 1.1.1: Algorithms block diagram
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Structure under study

2.1 Geometry

This study had been perfomed using a structure made of a beam. This beam has a constant section
with an Omega shape, in which lateral panels form a 602 angle with the top panel. The beam has a total
length of 10 meters and a height of 0.5 meters in between the first and last rib and top and bottom
surfaces respectively.

Figure 2.1.1: Example beam

The first rib is placed at the beginning (z = 0), the second at z = 3400 mm (with respect to the first
rib), the third at 6600 mm and the forth and last at the end of the beam, 10000 mm.

(a) External surfaces (b) Ribs surfaces

Figure 2.1.2: CAD design
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2.2 Material

The structure is made of two different GRP laminates. The top and bottom surfaces have a 10 mm thick
laminate while the laterals and ribs are 4mm.

The complete information on the laminates can be seen in table 2.2.1, where the thickness values
are in mm and the orientation in Degrees.

Laminate thickness ] Layer thickness Number of layers Orientation
| 10 | 0.2 | 50 - [(£45,90,0,90),015)5 |
| 4 | 0.2 | 20 C [(£45,90,07]s |

Table 2.2.1: Laminates

The 02 direction matches the longitudinal direction of the beam.

2.3 Damages to detect
The main objective of this study is to prove the ability of algorithms to detect damage presence in
structures, therefore, the damages have to be defined. They are the partial peel off of the top surface

and for the first rib.
Ultimately, the algorithm will have to classify a strain field between three states:

1. Top surface debond (D1)
2. Second rib debond (D2)

3. Undamaged structure (Ud)

The damages are made by a progressive bonding, starting with a total debonding of the surface and
increasing in 20% of the surface on each step until 20% of the surface remains unpeeled.

(a) Top surface debond: Damage 1 (b) Second rib debond: Damage 2

Figure 2.3.1: Damage location

2.4 Finite Elements Model

Once the geometry is defined it can be exported to a FEM software, in this case, to Patran. With this
method a big problem is reduced into many simple problems in which K matrix is easily computable and
Nastran, the post processor, finally obtains the strains.

The method will be explained below:

The DACOMAT project has received funding from the European Union’s Horizon 2020 research and 5
innovation programme under GA No. 761072
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2.4.1 Geometry

The geometry can be imported from a CAD model or doing the surface from scratch by introducing
all points coordinates, create the curves joining points and the surfaces connecting the curves. In this
study the last method was used.

2.4.2 Meshing

Preparing a good mesh is one of the most important parts of the process. This structure can be con-
sidered as a simple one due to the lack of curvature changes, thicknesses variation inside surfaces or
mass discontinuities, therefore no dense meshing is needed.

The beam has 4 different surfaces which can be seen in Figure 2.4.1. The mesh properties at each
surface are displayed in the tables below:

Figure 2.4.1: Numbered surfaces

The beam has 4 different surfaces and the repeated ones are meshed in the same way.

The meshing has been done by dividing the corresponding curve into an integer number of elements
of equal size. This means that each surface has N; - N; elements and (IV; + 1) - (N; + 1) nodes. The
properties at each surface are displayed in Table 2.4.1:

Surface | Curves Elements (1/2-Total) |  Nodes
1 Longitudinal/Top Cross 50/17 - 850 51/18 -918
2 Longitudinal/Lateral vertical 50/12 - 600 51/13 - 663
3 Longitudinal/Bottom cross 50/5 - 250 51/6 - 306
4 (irregular) | Top Cross/Lateral vertical/Bottom cross 17/12/5 18/12/5

Table 2.4.1: Top and bottom laminate

The model information of the undamaged state is shown in Figure 2.4.2.

6 The DACOMAT project has received funding from the European Union’s Horizon 2020 research and
innovation programme under GA No. 761072



MODEL SUMMARY BULK = @
ENTRY NAME NUMBER OF ENTRIES
CQUAD4A 3128
FORCE 32
GRID 382
LOAD 1
MAT1 1
MDLPRM 1
PARAM 2
PSHELL 2
SPC1 1
SPCADD 1

Figure 2.4.2: Model information

2.4.3 Loads and Boundary Conditions

The forces in a FEM are transmitted through the nodes, so the loads and the boundary conditions have
to be applied at them.

e The BC are applied at the lower nodes of the ribs at the ends of the beam. It consist of fixed
positioning on the three axes.

e The force is applied to the upper nodes of the central ribs, with a magnitude of 32x107 N dis-
tributed for each node (16 at each rib, 32 altogether) and with the negative direction of the axis
Y.

Figure 2.4.3: Load and BC applied

2.5 Results

Once the FEM is completed, we proceed to analyse the various structure states. After the post pro-

cesssing is done, the desired element strains are extracted to feed the damage detection algorithms.
As previously stated, there are two damages which are made in a progressive way. In a FEM model,

when you mesh two surfaces with a common curve, each surface has their own nodes belonging to the

The DACOMAT project has received funding from the European Union’s Horizon 2020 research and 7
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curve. In other words, the surfaces are independent unless the nodes are joined. Therefore, the way
to produce the debond was to not join the nodes of the surfaces involved.

We start with a complete debond (no joined nodes) and, at each damage step, the correspondent
nodes have been linked as can be seen in Figure 2.5.1.

Figure 2.5.1: Joined (blue arrow) and unjoined (pink) nodes

When a damage is made, the next step is to analyze the model and introduce the data in Nastran.
After postprocessing the results with Nastran and introducing back into Patran, the deformations can
be plotted. An example is shown at Figure 2.5.2

Figure 2.5.2: Damage 1 with a 80% of the total debond

The damage detection algorithm cannot be fed with the whole strain field which is extracted from
the FEM model, because in a real structure the instrumentation of the complete structure is not pos-

sible. So, nine rows of elements have been selected to simulate a distributed FOS net. This sensor net
can be installed in a real structure without problems.

8 The DACOMAT project has received funding from the European Union’s Horizon 2020 research and
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Figure 2.5.3: Distributed FOS

The distributed FOS can only measure the deformation of the structure in one direction. For this
reason it’s important to know the orientation of the local coordinate system of the elements due to the
fact that we need to extract the deformation value of the element axis that matches with the longitud-
inal direction at the sensor.

Figure 2.5.4: Elements’s local coordinate system

Fortunately all the elements, except the ribs’ ones, have their X-axis aligned with the sensor direc-
tion. This makes the data extraction easier.

The element strains (in the defined direction) are stored in a .rpt file that is generated by Patran,
nevertheless, this file contains all the elements of the structure and the algorithms that are going to
be fed with the FOS net elements. So, a Matlab code has been created in order to extract the strains
belonging to the net. This information is plotted in Figure 2.5.5 for all the structure states.

The DACOMAT project has received funding from the European Union’s Horizon 2020 research and 9
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Figure 2.5.5: Sensor net strainfields exstracted from .rpt file

Nevertheless, the damage detection algorithms cannot be fed only with just the strains generated
by one single value load since a structure can be subjected to different loads. It has to be remembered
that the strains have a linear dependence with the load, so that, if a force with a value of 50% to the
maximum load is applied, the strain will be a half of maximum. Therefore, the strains at each damage
have been scaled from 100% to 30% in 10% steps, in this way each structure state has 8 load cases. This
result can be seen in Figure 2.5.6

The DACOMAT project has received funding from the European Union’s Horizon 2020 research and 11
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(c) Damage 2, 80% of damage

Figure 2.5.6: Strains provoked by a scaled load

At this point, we have the deformations on an ideal structure. However, if FOS sensors are used to
read the strain field in a structure in a real test, noise will come up with the signal received from them.
Therefore, a Gaussian noise is added with the Matlab code to simulate this noise.

The maximum amplitude of the noise in these sensors is about 5 microstrains, which is the value that
has been added at the time of carrying out the study. However, as can clearly be seen in the example
in Figures 2.5.8, 2.5.9 and 2.5.7 noise has been added with an amplitude of 50. The Patran 3D plots are
included in order to have a general idea of the deformation state of the structure at each state.

The DACOMAT project has received funding from the European Union’s Horizon 2020 research and 13
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Figure 2.5.7: Undamaged state noise comparison and 3D plot
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Figure 2.5.8: Damage 1 noise comparison and 3D plot

The DACOMAT project has received funding from the European Union’s Horizon 2020 research and 15
innovation programme under GA No. 761072



DAMAGE 2, 80% DAMAGE, 100% LOAD
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(b) Patran deformation plot

Figure 2.5.9: Damage 2 noise comparison and 3D plot

With all this information we can proceed to the algorithm definition and performance.
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Damage detection algorithms

3.1 Machine Learning: LSTM network

Machine learning is a method of data analysis that automates analytical model building. It is a branch
of artificial intelligence based on the idea that systems can learn from data, identify patterns and make
decisions with minimal human intervention.

In this case, the structural diagnosis is carried out by an Recurrent Neural Network (RNN), proposed
to solve a multiclass classification problem (Damage 1, 2 and Undamaged) with sequence data.

As with humans, RNNs don’t start their thinking from scratch every second, they don’t throw all the
knowledge away and start thinking from scratch again. For example, if you want to classify what kind
of event is happening at every scene in a movie, the most reasonable idea is to use the previous scenes
in order to take a decision for the present one. This cannot be done by traditional neural network,
whereas RNNs can do it. This is useful for our purpose because we will be able to classify a damage
using the other damages information.

(h) 0 (h)
s==u IS
6 &

Figure 3.1.1: Recurrent Neural Network example

> —>
v
v
> —>

v

®

In the above diagram, Figure 3.1.1, shows that a recurrent neural network can be thought of as
multiple copies of the same network, each passing a message, C};, to a successor, A, which has an input
x;, and provides an output h;.

One of the appeals of RNNs is the idea that they might be able to connect previous information to
the present task. Sometimes, we only need to look at recent information to perform the present task,
on the contrary there are also cases where we need more context. Unfortunately, as that gap grows,
RNNs become unable to learn to connect the information.

Long Short Term Memory Networks (LSTMs) are a special kind of RNN, capable of learning long-
term dependencies. They were introduced by Hochreiter & Schmidhuber (1997), and were refined and
popularized by many people in following work. LSTMs are explicitly designed to avoid the long-term
dependency problem. Remembering information for long periods of time is practically their default
behavior. For this reason, these are the most suitable network for a long input array, like our strain field
array.



Actually, we have used a biLSTM network, which has both backward and forward information propaga-
tion.

~
X O -
Ean>
A b o A
[o] [o] [&m] [0]
_>
J

|
2 ®© &)

Figure 3.1.2: LSTM network example

3.1.1 Network definition

To define the layers of the network, we have to know what type of input and output we have and what
type of structure admits the used LSTM layer.

The main idea of the structure state classification is that a strain field extracted from a structure
(with an unknown load and damage state) is introduced to the net. The network’s output will be the
type of damage present in the structure, and this alone classifies the state.

¢ This means that an input layer is needed and this is where we define the size of the input array. In
this study the size is 1, so it is only one row of information. On the contrary, if we had used both
strain and stress fields, the input size would have been 2, a two row array with as many columns
as elements the sensors have.

e After the input layer, we have the biLSTM layer. At this point the number of hidden blocks are
defined (numHiddenUnits), and we have selected 100 of them.

e Next, a Fully Connected Layer is introduced to multiply the input for some weights belonging to
each structure state, known as classes from now on.

¢ Then, a Softmax layer is introduced to interpret the previous data as a probability.

¢ Finally, a Classification Layer outputs the class as the one which has the highest probability score.

layers = [sequencelnputlLaver (inputSize)
bilstmLaver (nundiddenUnits, "OutputMode", "1last')
fullyConnectedLayer (numClasses)
softmaxLayer
claszificationlLaver]:

18 The DACOMAT project has received funding from the European Union’s Horizon 2020 research and
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layers =
5xl Layer array with layers:
1 " Sequence Input Sequence input with 1 dimensions
2 " BiL5TM BiL5TM with 100 hidden units
3 " Fully Connected 3 fully connected layer
4 " Softmax softmax
5 e Classification Cutput Crossentropvex

Figure 3.1.3: Net layers

3.1.2 Training options setup

All the Neural Networks need to be trained with a classified data set to optimise the internal parameters
in order to have a good performance with the desired problem. In this study, we have labelled the
structure states into 3 different classes, which are: D1, D2 and Ud, and each strain array is associated
with a label, Figure 3.1.4

| Strains Val | [ Labels Val 3 |
36x1 cell 36x1 categorical
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 3
2| 1450 double 201
3| 1ed50 double 301
4| 10450 double 4 D1
5| 1450 double 5 D1
6| 1ed50 double 6 D1
7| 10450 double 701
8| 10450 double 8 D1
9/ 1450 double 9. D1
10| 16450 double 1002
11| 16450 double 1102
12| 1450 double 1202
13/ 150 double 1302
14| 1%450 double 14D2
15| 1x450 double 15D2
16| 1x450 double 162
17| 16450 double 1702
18| 1x450 double 13D2
19| 1x450 double 19D2
20| 1450 double 2002
21| 1450 double 21/D2
22| 15450 double 22Ud
23| 1450 double 23Ud
24| 116450 double 24 Ud
25| 1450 double 25 Ud
26| 1450 double 26/Ud
77| 1450 Arshle Y7l

Figure 3.1.4: Validation data set

The full data set, which with all the states and the scaled loads rises up to a 240 strain field array,
is divided between Training and Validation in a random division in 85% (204) and 15% (36) of the total
respectively.
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options = trainingOptions('adam"', ...
'ExecutionEnvironment', "gpu', ...
'GradientThreshold',1l, ...
'MaxEpochs ', maxEpochs, ...
'"MiniBatchSize' , miniBatchSize, ...
'SequencelLength', 'longest', ...
'Shuffle', "'never', ...
"Verbose', 0, ...
'Plots', 'training-progress') ;

options =

TrainingOptionsADAM with properties:

GradientDecayFactor: 0.9000
SquaredGradientDecayFactor: 0.95990
Epsilon: 1.0000e-08
InitialLearnRate: 1.0000=-03
LearnRateScheduleSettings: [1lx1 struct]
LZEegularization: 1.0000e-04
GradientThresholdMethod: 'lZ2norm'
GradientThreshold: 1
MaxEpoch=s: 500
MiniBatchSize: 30
Verbose: 0O
VerboseFreguency: 50
ValidationmData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'never!
CheckpointPath: '°
ExecutionEnvironment: 'gpua'
WorkerLoad: []
CutputFcn: []
Plots: 'training-progress'
Sequencelength: 'longest'
SequencePaddingValues: O
SequencePaddingDirection: 'right'
DispatchInBackground: 0
EesetInputNormalization: 1

Figure 3.1.5: Training options

The Batch Size option is very useful because, at the training time, the Training data set is divided
into smallest groups and the net performance increases significantly.
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3.1.3 Net performance

Once the net is trained, it is ready for the validation process. This consist of introducing the strain arrays
inside the pretrained net and comparing the output label with the input one. In this way, we can have
a general idea of the whole net performance, because these inputs were separated from those used to
train the network. In other words, that was the first time when the net classifies this structure states.

CONFUSION MATRIX

1 8 0 0 0 100%
22. 2% 0.0% 0.0% 0.0% 0.0%
D2 0 14 2 0 87 5%
0.0% 38.9% 5.6% 0.0% 12.5%
m
o
]
G
T Ud 0 2 9 0 81.8%
= 0.0% 5.6% 25.0% 0.0% 18.2%
=
o
&
) 0 1 0 0 0.0%
' 0.0% 2.8% 0.0% 0.0% 100%
100% 82.4% 81.8% NaN% 86.1%
0.0% 17.6% 18.2% NaN% 13.9%
o o N "

Target class

(a) Validation confusion matrix
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NET PREDICTION WITH A SINGLE STRAIN FIELD INPUT
100 [ SEooes . ST T Svr a .
90 1
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7O 1
5
g 60 % 1
2 80f 1
ﬁ Damage 1 Damage 2 Undamage
@ 40T 1
o
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30 1
201 STRUCTURE STATE( 4
<> Damage 1
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Undamage
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) 5 10 15 20 25 30 a5
Test
(b) Prediction scores
Figure 3.1.6: Net performance with the validation data
CONFUSION MATRIX
D1 80 0 0 0 100%
33.3% 0.0% 0.0% 0.0% 0.0%
D2 0 68 5 0 93.2%
0.0% 28.3% 2.1% 0.0% 6.8%
m
m
@
=
T Ud 0 10 74 0 88.1%
B 0.0% 4.2% 30.8% 0.0% 11.9%
o
2
&
- 0 2 1 0 0.0%
' 0.0% 0.8% 0.4% 0.0% 100%
100% B5.0% 92.5% MNaM% 92.5%
0.0% 15.0% 7.5% MNaM% 7.5%
N o N "
Target class

(a) Total data confusion matrix
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NET PREDICTION WITH A SINGLE STRAIN FIELD INPUT
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(b) Prediction scores

Figure 3.1.7: Net performance with the all the data

In Figures 3.1.6 and 3.1.7 the net performance can be compared between the Validation and Total
data input. The net accuracy is obviously better in the second one because it has been trained with a
huge amount of cases introduced to test it. It is important to emphasise that when a predicted score is
less than 60% it has been classified as indecisive, ”?”

In the same way, a network orientated to detect the debond size has been trained for the two
damaged states. However, the results in Figures 3.1.8 and 3.1.9 are obtained with all the load cases
instead of doing it with the validation data. The reason for having done this is because with only 16
strain fields at each load case, 80 in total, 15% in not a representative number of tests in order to have
a representative view of the net performance.
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CONFUSION MATRIX
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(a) Top surface debond confusion matrix
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Figure 3.1.8: Classification of increasing Damage 1
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CONFUSION MATRIX
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(a) Second rib debond confusion matrix
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Figure 3.1.9: Classification of increasing Damage 2
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3.2 Principal Component Analysis (PCA)

PCAis a widely use non-parametric method of extracting information from large data sets. Itis a classical
multivariate analysis procedure to reduce a complex data set to a lower dimension and reveal some hid-
den structure/pattern. The original data are reexpressed in a new orthogonal basis where the data are
arranged along directions of maximal variance and minimal redundancy, called principal components.
The damage indicator for this technique is the Q-index and the detection capability has been proven at
different damage states using FBG strain with the fully loaded structure. Although Q-index is a power-
ful damage indicator, capable of detecting damage increments, it cannot be used to determine damage
location or accurate damage evolution. However, due to its easy implementation and fast processing, it
is a very widespread SHM analysis method. A detailed discussion was formerly presented at APWSHM
2018 (DOI: 10.1177/1475921710388972) and will not be repeated here.

PCA is a mathematical procedure that uses an orthogonal transformation to convert a set of ob-
servations of possibly correlated variables into a set of values of linearly uncorrelated variables called
principal components. This transformation is defined in such a way that the first principal component
has the largest possible variance (that is, accounts for as much of the variability in the data as pos-
sible). Usually, the number of principal components can be much smaller than the number of original
variables. Each succeeding component in turn has the highest variance possible under the constraint
that it be orthogonal to (that is, uncorrelated with) the preceding components. The PCA algorithm is
composed of the following mathematics operations (Matlab tools are available for it):

1. Organize the data set as n x m matrix, where nis the number of experiments and m is the number
of measured variables: X

2. Normalize the data to have a zero mean and unity variance

3. Calculate the eigenvectors-eigenvalues of the covariance matrix: C' = X X7
4. Keep only the first eigenvectors as the principal components

5. Project any new collected data into the former baseline

6. ldentify if new data follow global trends (Damage Index)

There are statistical tools that, used along with PCA, allow the detection of anomalous behavior
in systems. The two most common tools are the Q index (or index SPE Squared Prediction Error) and
the T-index. The index Q indicates how well each sample fits the PCA model. It is a measure of the
difference between a sample and its projection in the main components retained by the PCA model.

3.2.1 PCA performance

In the next figures (3.2.1) the Q index evolution is shown with an increased debonding of the three
structure states.

The first figure shows that the Damage 1 has a higher Q index than the other two states and it
follows the expected increasing tendency. The second figure is a detail view of the first one. Here a big
dispersion of the Damage 2 Q-index can be seen, and it is difficult to differentiate it from
the undamaged state.
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Figure 3.2.1: Q index projected to Undamaged subspace
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Conclusions

The benefits envisioned by the SHM approach for civil structures inspections without disassembly in-
clude minimising costs, improving reliability, and maximising availability of aircraft. Based on previous
results, it can be concluded:

— FOS are excellent strain sensors, but not ‘damage sensors’.
— FOS are a good option for SHM on civil structures.

— PCA provides an index to calculate the damage occurrence. However, this technique can not
calculate the damage location or assess damage size.

— RNN requires a previous training and is more difficult to use and compute.

— RNN could provide not only the damage assessment, but could also provide a detailed localisation
of the damage area that can be presented as a damage map.

— LSTM network has the capability to detect the presence of a damage and quantify this damage
(%).

— The capability of learning load dependencies at different damage states has been demonstrated
by LSTM network.

— LSTM network can perform an accurate structure state classification.

— The LSTM network cannot make a clear distinction between Damage 2 and the Undamaged state
due to the fact that the deformations are practically identical, Figure 4.0.1.
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Figure 4.0.1: Comparison among different structure strain fields

— The similarity of the deformation fields is due to the fact that the ribs are an element that stiffens
to torsion, while the beam is working in flexion. This makes its debonding not as relevant as that

of the top cover.

— The similarity between the stain field caused by a same load at different debond lengths (Figure
2.5.5c) makes the trained network unable to differentiate between some debond lengths.

— The RNN validation with a FEM gives a first approach to the possibilities of the algorithm, the next
step should be checking the algorithm performance on a real structure.

— A structure state classification algorithm was implemented but, following the same steps, a load
state detection can be done.
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