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Popular science summary 
Fibre bridging in delaminating composites is a mechanically complex phenomenon. The tractions on 
the surface in a fracture zone with fibre bridging is the sum of forces from numerous individual fibres 
crossing between the fracture surfaces. The mathematical modelling of this is demanding and 
performing detailed simulations with for instance finite element analyses require enormous 
computational resources and large effort in pre and post processing.  In DACOMAT a very efficient 
semi-analytical micromechanical model of fibre bridging describing the pull out, fracture and buckling 
of fibres has been developed. The model is in very good accordance with detailed finite element 
analyses but several magnitudes shorter calculation time. The model has shown to provide valuable 
input both for understanding how material properties affect fibre bridging and how cohesive laws for 
macroscale modelling can be defined.     

Technical summary 
A mathematical model describing crossover fibre bridging is established. The model is a semi-
analytical micromechanical model based on the framework of Sørensen et al. [1]  extended with von 
Kármán strains [2] and a Weibull distributed failure strain in the bridging fibres. The model includes 
the debonding of fibres from the matrix, buckling of bridging fibres in compression and ultimately 
rupture of fibres. The model's predictions are shown to be in excellent agreement with those 
resulting from detailed finite element models. Furthermore, the computational efficiency of the 
proposed model enables parametric studies that would be unfeasible using finite element models 
with similar accuracy. A small parametric study was conducted using the proposed model to 
demonstrate its feasibility. The most important finding from this preliminary parametric 
study is that increasing the fracture energy of the fibre/matrix interface may decrease the 
delamination resistance of laminates, because fibres rupture prematurely. This contradicts 
the current trends in sizing and matrix development, where still stronger interfaces are 
sought. 
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1. Introduction 
The use of fibre reinforced composite laminates for structural applications has seen a remarkable 
increase over the past couple of decades. Significant weight and cost savings can be achieved by 
replacing conventional materials with composite laminates owing to their high specific properties 
and tailorability. Still, low fracture toughness through the thickness remains an important hurdle, as 
it can engender rapid delamination growth and lead to catastrophic failure. 
 
Several techniques have been developed to increase through-thickness fracture toughness, including 
z-pinning, stitching and 3D weaving. Aside from such toughening methods, an intrinsic strengthening 
mechanism manifests itself in composite laminates under certain conditions known as crossover fibre 
bridging. This mechanism consists of fibres bridging a delamination in the wake of its crack front. By 
potentially acting as crack arrestors, fibre bridging can lead to increased delamination resistance. 
 
Fibre bridging is typically attributed to the nesting of fibres from adjacent plies, which is most 
notable in unidirectional laminates. However, there is no consensus on the effect of ply orientation 
on the manifestation of fibre bridging [3]. In turn, Johnson et al. [4] reported that small ply angles of 
1.5 and 3 degrees reduce the presence of fibre bridging. Lastly, Nicholls and Gallagher [5] reported 
that increasing the relative ply angle could activate a second bridging mechanism: the crack front 
does not necessarily propagate in parallel to the fibre axis and can thus deviate from the main crack 
plane into adjacent ply interfaces thereby ensuing in additional fibre bridging in the wake of new 
crack fronts. 
 
Bradley and Cohen [6] identified yet another source of fibre bridging for tough resin matrices. They 
suggested that, in tougher resin matrices, the crack tip yield zone extends to several plies above and 
below the main delamination plane. Additional delamination cracks will appear throughout this 
extended zone which will eventually yield further fibre bridging as the delamination grows.  
 
Micromechanical modelling of crossover fibre bridging allows for the study of its underlying 
mechanisms and potential approaches to harness this intrinsic mechanism such as to maximize 
fracture toughness and damage tolerance. Several micromechanical models have thus far been 
proposed to predict the macroscopic traction-separation laws for crossover fibre bridging. 
 
Spearing and Evans [7] developed one such model for pure mode I delamination that includes shear 
deformations in a bridging "ligament" with a rectangular cross section [8]. Shear deformations are 
dominant for small crack opening displacements while the ligament is relatively short. In contrast, 
the shear deformations are negligible for large crack opening displacements when the ligament has 
been peeled from the fracture surface and become slenderer. 
 
Kaute et al. [9] proposed a model whereby only the axial stiffness of the bridging fibre is considered. 
They modelled the bridging fibre as a straight beam with a large length to diameter ratio. In addition, 
they considered the reduction in tensile strain due to fibre slippage within the uncracked matrix by 
applying fracture-mechanic considerations. The model predicts that the normal tractions acting on 
the fracture surface from a single fibre will increase as function of opening displacement and 
eventually reach a plateau. A length-dependence of fibre strength was included through a Weibull 
distribution. In this way, the number of surviving fibres decreases for increasing opening 
displacements and the resulting traction on the fracture surface also decreases, as observed 
experimentally. 
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Sørensen et al. [1] proposed a micromechanical model for mixed-mode delamination based on 
classical Euler-Bernoulli beam theory. Their work can be viewed as an extension of the model by 
Spearing and Evans to mixed mode I/II delamination. The two models offer identical results for pure 
mode I crack opening if the shear term of Spearing and Evans is omitted. In such a case, both models 
predict the normal traction to be inversely proportional to the square root of the normal opening 
distance.  
 
The models by Spearing and Evans [7] and Sørensen et al. [1] are limited to infinitesimally small 
deflections of the bridging fibre, i.e. when the local normal opening displacement is much smaller 
than the height of the bridging fibre. In contrast, the model proposed by Kaute et al. [9] is only 
applicable when the local normal opening displacement is several orders of magnitude greater than 
the height of the bridging fibre. 
 
The scope of the present work is to establish a micromechanical model applicable to the full range of 
lateral deflections that bridging fibres are subjected to under mixed mode I/II delamination. The 
model is based on the framework of Sørensen et al. [1] and employs moderately large deflection 
beam theory and a Weibull distributed failure strain in the bridging fibres. 

2. Mathematical model 
A fracture process zone (FPZ) with bridging fibres and the corresponding equivalent tractions 
represented by macroscopic traction-separation laws are illustrated in Figure 1. A mathematical 
model for these traction-separation laws will be derived in this section. 
 

  
Figure 1. Fracture process zone with bridging fibres (left) and equivalent fracture process zone with bridging tractions (right). 

 
Figure 2 shows a single bridging fibre located at an arbitrary position within the fracture process zone 
(FPZ). The fibre will be considered as a nonlinear beam. In the depicted case, the beam is fixed at the 
left end while the local opening displacements are imposed to the right end. The horizontal and 
vertical displacements associated with the right beam end are denoted 𝛿𝛿𝑥𝑥  and 𝛿𝛿𝑦𝑦, respectively. 
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These displacements correspond to the local opening displacements that are prescribed in the 
model. Both ends of the beam are constrained from rotating. The prescribed end displacements 
result in varying displacements along the beam. The horizontal displacement as a function of position 
is denoted as u(x) and the corresponding vertical displacement is denoted as w(x). 

 

 

Figure 2. A single bridging fibre modelled as a beam. 

 
The behaviour of the fibre material is assumed to be linear elastic, and the laws of elasticity remain 
unchanged from classical beam theory. The axial force N and bending moment M can be thus 
written: 

𝑁𝑁 = 𝐸𝐸𝐸𝐸ϵ𝑛𝑛 (1) 

𝑀𝑀 = 𝐸𝐸𝐸𝐸κ (2) 

where 𝐸𝐸 is the Young's modulus, 𝐸𝐸 is the cross-sectional area, 𝐸𝐸 is the second moment of area, ϵ𝑛𝑛 is 
the strain at the neutral axis and κ is the curvature. Unlike classical beam theory, however, the 
expression for the axial strain at the neutral axis includes a second term to account for finite 
rotations (von Kármán strain [2]): 

ϵ𝑛𝑛 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1
2
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

(3) 
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Similarly, the definition of curvature also includes a nonlinear rotational term [10]: 

κ = −
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

�1 + �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
2
�
3
2�

(4) 

Nevertheless, we will restrict our model to moderately large rotations where the square of the slope 
is small compared to unity. Curvature can thus be defined in the same way as in the small deflection 
theory: 

κ = −
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

(5) 

The motivation for including the square of the slope in Equation (3) but not in (5) is that the fibre 

material is assumed to only experience small strains, i.e. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
≪ 1.  

In turn, equilibrium in the vertical direction for a beam with non-zero axial force and no distributed 
vertical load is given by [10]: 

−𝐸𝐸𝐸𝐸
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

+ 𝑁𝑁
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

= 0 (6) 

where N is the still unknown axial force and w is the vertical displacement at a distance x from the 
left end of the beam. We assume the axial force as well as the cross-sectional properties to be 
constant along the beam. Eq. 6 is then divided by EI and the term λ2 = 𝑁𝑁

𝐸𝐸𝐸𝐸
 is introduced as follows: 

𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4

− λ2
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

= 0 (7) 

Depending on the axial force, the general solution of this ordinary differential equation is: 

𝑑𝑑(𝑑𝑑) = 𝐶𝐶0 + 𝐶𝐶1𝑑𝑑 + 𝐶𝐶2𝑑𝑑2 + 𝐶𝐶3𝑑𝑑3 for 𝑁𝑁 = 0
𝑑𝑑(𝑑𝑑) = 𝐶𝐶0 + 𝐶𝐶1𝑑𝑑 + 𝐶𝐶2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λ𝑑𝑑) + 𝐶𝐶3𝑐𝑐𝑠𝑠𝑠𝑠ℎ(λ𝑑𝑑) for 𝑁𝑁 ≠ 0

(8) 

The constants C0 to C3 and the axial force must be determined from the boundary conditions. It 
should be noted that the constants will differ for the two cases (𝑁𝑁 = 0 and 𝑁𝑁 ≠ 0). The boundary 
conditions of the beam shown in Figure 2 are as follows: 

𝑑𝑑(0) = 0
𝑑𝑑(0) = 0
𝑑𝑑′(0) = 0
𝑑𝑑(𝐿𝐿) = δ𝑥𝑥
𝑑𝑑(𝐿𝐿) = δ𝑦𝑦
𝑑𝑑′(𝐿𝐿) = 0

(9) 
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In the case of a constant axial force, Equations (8) and (9) form a system of four linear equations that 
must be solved simultaneously, and the following values can be determined for the four 
aforementioned constants: 

𝐶𝐶0 = 0
𝐶𝐶1 = 0

𝐶𝐶2 =
3δ𝑦𝑦
𝐿𝐿2

𝐶𝐶3 =
−2δ𝑦𝑦
𝐿𝐿3 ⎭

⎪
⎬

⎪
⎫

for 𝑁𝑁 = 0

𝐶𝐶0 =
𝛿𝛿𝑦𝑦�1 − 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λL)�

2 − 2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λL) + λLsinh(λL)

𝐶𝐶1 =
𝛿𝛿𝑦𝑦λsinh(λL)

2 − 2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λL) + λLsinh(λL)

𝐶𝐶2 =
𝛿𝛿𝑦𝑦(𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λL) − 1)

2 − 2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λL) + λLsinh(λL)

𝐶𝐶3 =
−𝛿𝛿𝑦𝑦𝑐𝑐𝑠𝑠𝑠𝑠ℎ(λL)

2 − 2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(λL) + λLsinh(λL)⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

for 𝑁𝑁 ≠ 0

(10) 

 

Since the axial force is assumed to be constant along the beam, it can be expressed in terms of the 
total beam elongation: 

𝑁𝑁 = 𝐸𝐸𝐸𝐸
Δ𝐿𝐿
𝐿𝐿

(11) 

The axial strain depends on both vertical and horizontal displacements u and w as written in 
Equation (3). The elongation of the beam can be determined from the integral of Equation 3 which 
equals the difference in horizontal movement at the ends plus the integral of the axial strain arising 
from vertical movement along the beam: 

Δ𝐿𝐿 = 𝑑𝑑(𝐿𝐿) − 𝑑𝑑(0) + �
1
2
�

dw
dx
�
2L

0
dx (12) 

Inserting Equations (12) and (9) into (11) yields: 

𝑁𝑁 =
𝐸𝐸𝐸𝐸
𝐿𝐿
�δ𝑥𝑥 + �

1
2

𝐿𝐿

0
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
2

𝑑𝑑𝑑𝑑� (13) 

Inserting Equations (8) into (13) results in a rather complicated transcendental equation for λ, from 
which no closed-form solution has been obtained. An iterative approach is instead used where Ni+1 is 
found by inserting Ni into Equations (8) and (10) and using this in Equation (13). The vertical 
displacement w(x) calculated from linear theory (i.e. setting N = 0) can be used as a starting point for 
iteratively calculating the axial force. 

Combining Equations (8) and (10) provides the solution for N = 0: 

𝑑𝑑0(𝑑𝑑) = δ𝑦𝑦 �
3𝑑𝑑2

𝐿𝐿2
−

2𝑑𝑑3

𝐿𝐿3 �
(14) 
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Differentiating Equation (14), inserting into Equation (13) and performing the integral yields: 

𝑁𝑁0 =
𝐸𝐸𝐸𝐸
𝐿𝐿 �δ𝑥𝑥 +

3𝛿𝛿𝑦𝑦2

5𝐿𝐿 �
(15) 

 

This initial estimate is normally very good, and few iterations are needed to obtain acceptable 
accuracy. 

Figure 3 illustrates two fibres crossing in the opposite directions. The equations derived above are 
valid for a fibre crossing from lower left to upper right. Similar expressions for a fibre crossing in the 
opposite direction are readily derived but will not be shown here. 

 

Figure 3. Two fibres crossing in opposite directions and sign convention of bridging tractions. 

Figure 3 also illustrates the sign convention for bridging tractions and beam forces. Since beam ends 
are constrained from rotating, the horizontal force acting on the fracture surface from one beam is 
identical to the axial force N. Similarly, the vertical force is identical to the shear force V at the end of 
the beam. The shear force can be obtained by differentiating the bending moment, which is 
proportional to the curvature: 

𝑉𝑉(0) = 𝑀𝑀′(0) = −𝐸𝐸𝐸𝐸𝑑𝑑′′′(0) = �
−6𝐶𝐶3𝐸𝐸𝐸𝐸 𝑓𝑓𝑐𝑐𝑓𝑓 𝑁𝑁 = 0
−λ3𝐶𝐶3𝐸𝐸𝐸𝐸 𝑓𝑓𝑐𝑐𝑓𝑓 𝑁𝑁 ≠ 0 (16) 

 

Slender fibres are susceptible to buckling if they are subjected to compressive axial forces approaching 
the critical load, which for fixed ends can be written as follows: 

𝑁𝑁𝑐𝑐𝑐𝑐 =
4π2𝐸𝐸𝐸𝐸
𝐿𝐿2

(17) 

Therefore, no contribution to the bridging tractions are assumed for fibres meeting the buckling 
criterion 𝑁𝑁 < −𝑁𝑁𝑐𝑐𝑐𝑐. 
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The forces in a bridging beam with given length L were derived above. The length of the beam must 
be determined for given opening displacements. If the FPZ of the debonding process between fibre 
and matrix is small, L can be determined by requiring that the potential energy release rate of the 
bridging mechanism equals the fracture energy of the interface 𝐺𝐺𝑐𝑐 . The potential energy of an elastic 
body Π is defined as follows [11]:  

Π = 𝑈𝑈 − 𝐹𝐹 (18) 

where U is the strain energy in the body and F is the work performed by external forces. When the 
displacement of the crack surfaces is fixed, 𝐹𝐹 = 0 and Π = 𝑈𝑈. The rate of change in potential energy 
with the crack area G can thus be written as follows: 

𝐺𝐺 =
∂Π
∂𝐸𝐸

=
∂𝑈𝑈
∂𝐸𝐸

=
∂𝑈𝑈
𝑏𝑏 ∂𝐿𝐿

(19) 

where 𝐸𝐸 is the fracture area and 𝑏𝑏 is the effective width of the fracture area. Since the material is 
assumed to be linearly elastic, the strain energy density can be calculated as: 

𝑑𝑑� =
1
2
σϵ =

𝜎𝜎2

2𝐸𝐸
(20) 

The total strain energy can then be expressed as: 

𝑈𝑈 = �𝑑𝑑�𝑑𝑑𝑉𝑉
𝑉𝑉

= �
𝑁𝑁2

2𝐸𝐸𝐸𝐸2
𝑑𝑑𝑉𝑉

𝑉𝑉
+ �

𝑀𝑀2𝑦𝑦2

2𝐸𝐸I2
𝑑𝑑𝑉𝑉

𝑉𝑉
=
𝑁𝑁2𝐿𝐿
2𝐸𝐸𝐸𝐸

+
𝐸𝐸𝐸𝐸
2
� 𝑑𝑑′′(𝑑𝑑)𝑑𝑑𝑑𝑑
𝐿𝐿

0
(21) 

where y is the distance to the neutral axis. The first term is due to stretching and the second to 
bending. The bending moment M is expressed by 𝑀𝑀(𝑑𝑑) = −𝐸𝐸𝐸𝐸𝑑𝑑′′(𝑑𝑑), where w(x) is the deflection of 
the nonlinear beam as described by Equation (8). Numerical differentiation is used in our 

implementation to determine 𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿

 . The length L is determined from the equilibrium condition, G = Gc. 
In practice by solving the following equation using Newton's method: 

𝐺𝐺𝑐𝑐 +
1
𝑏𝑏
∂𝑈𝑈
∂𝐿𝐿

= 0 (22) 

The contribution from both the normal and shear force to the fracture surface tractions depends on 
fibre orientation as illustrated in Figure 3. Let η𝑑𝑑 and η𝑑𝑑 be the number of fibres bridging a unit area 
of the fracture surface in the up and down diagonal direction, respectively. The tractions on the 
fracture surface can then be written as follows: 

σ𝑡𝑡 = 𝑁𝑁𝑑𝑑η𝑑𝑑 − 𝑁𝑁𝑑𝑑η𝑑𝑑
σ𝑛𝑛 = 𝑉𝑉𝑑𝑑η𝑑𝑑 − 𝑉𝑉𝑑𝑑η𝑑𝑑

(23) 

where σ𝑡𝑡 and σ𝑛𝑛 are the tangential and normal tractions, respectively. The sign convention follows 
from Figure 3. The number of fibres currently bridging a unit area of the fracture surface is the 
product of the number of fibres bridging initially and the fraction of unbroken fibres: 

η𝑑𝑑 = η𝑑𝑑0𝑃𝑃𝑠𝑠𝑑𝑑
η𝑑𝑑 = η𝑑𝑑0𝑃𝑃𝑠𝑠𝑑𝑑

(24) 
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The probability of survival of single fibres of length 𝐿𝐿 under an applied homogeneous strain no 
greater than 𝜖𝜖 is described using the two-parameter Weibull distribution [12]: 

𝑃𝑃𝑠𝑠(ϵ) = 𝑒𝑒�−
𝐿𝐿
𝐿𝐿0
� ϵϵ0

�
𝑚𝑚
� (25) 

Where ϵ0 and 𝑚𝑚 are the respective Weibull scale and shape parameters for the failure strain and 𝐿𝐿0 
is the reference length at which these parameters are determined. The shape parameter m 
determines the coefficient of variation and the magnitude of the size effect, in addition to describing 
the flaw distribution. Previous experiments have shown that this approximation is reasonable for 
fibres subjected to uniform strain [12-14]. Assuming that fibres fail due to surface flaws when 
subjected to tension, the following surface integral can be used for fibres subjected to a 
heterogeneous strain field [15]:  

𝑃𝑃𝑠𝑠 = 𝑒𝑒
�− 𝐷𝐷
2𝜋𝜋𝐷𝐷0𝐿𝐿0𝜖𝜖0𝑚𝑚

∫ ∫ ⟨𝜖𝜖⟩𝑚𝑚2𝜋𝜋
0

𝐿𝐿
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥�

(26) 

Here ⟨⟩ indicate Macaulay brackets so that only tensile strains contribute to the likelihood of fibre 
failure.  

Both the semi-analytical model and finite element analysis have shown that the largest combination 
of bending and axial strains occurs at the point of last contact between a partly pulled out fibre and 
the matrix. The largest contribution to the surface integral occurs at this cross-section. As the fibre 
continues to be pulled out, the previously strained cross-sections migrate away from the point of last 
contact and their contribution to the surface integral plummets. This is analogous to testing a chain 
by straining one link at the time, as illustrated in Figure 4. The integral in Equation (26) of such a test 
would be constant. The model does not capture size effects whereby the probability of failure due to 
a severe defect increases as more links in the metaphorical chain have become subjected to severe 
loading. 

 

Figure 4. Straining mainly the end of the bridging ligament causes the surface integral at the current state to be less 
representative for the strain history the ligament has seen.  
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A more representative alternative to capture the fibres' strain history would be to integrate strains 
along the fibre's end circumference and then multiply by the fibre length as follows: 

𝑃𝑃𝑠𝑠 = 𝑒𝑒
�− 𝐷𝐷𝐿𝐿
2𝜋𝜋𝐷𝐷0𝐿𝐿0𝜖𝜖0𝑚𝑚

∫ ⟨𝜖𝜖⟩𝑚𝑚2𝜋𝜋
0 𝑑𝑑𝑑𝑑�

(27) 

3. Implementation of the model 
Two different implementations of the model described in Section 2 have been made. The model was 
initially implemented as a set of MATLAB scripts. These require MATLAB, which is a proprietary 
software platform, but no additional MATLAB toolboxes. For this reason, a second implementation 
was made in Python, which is a free open-source platform. The latter has also been compiled to an 
executable stand-alone software that can run on Windows without any additional software 
requirements. All these implementations have been checked against each other to identify and 
correct any bugs. The MATLAB implementation has been further validated against finite element 
simulations as will be shown in Section 4. 
 
A brief introduction to the stand-alone executable version is provided below. The distributable zip 
file contains two sample CSV files (model input and output examples) along with an executable file: 

  
 
Upon double-clicking the MicroMech-icon, the user is prompted to select an input file: 
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The program then prompts for the output file: 

 
 
If an existing output file is selected, the program asks for confirmation to overwrite this file: 

 
 
The various cases defined in the input file are then calculated. A message pops up once all the 
calculations have been completed and the results written to the output file: 
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The results can then be imported to Excel or other appropriate programs for visualisation and further 
post processing. In addition, the software itself contains simple purpose-built plotting capabilities: 

 
 
The figures can be saved in a variety of formats directly from the plotting tool: 
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The input variables appear as column headers in the first row of the input CSV file: 

 
 
The output file contains all the input variables, and the calculated output variables are appended in 
the following columns: 

 
 
In turn, each subsequent row corresponds to a particular case. In the above example, nine cases 
consist of identical variables except for the normal opening, which is increasing monotonically. In 
parametric studies such as the one presented in Section 5, Gc and E are the typical variables that 
would be varied.  
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4. Validation of the model 
A comparison of the MATLAB implementation and nonlinear finite element simulation is presented in 
this section.  
The first part of the mathematical model, namely Equations (1) to (16), predicts the forces resulting 
from translational movements of the right end of a beam with given length. Detailed finite element 
analyses were carried out in LS-DYNA in order to test both the applicability of the proposed model 
and its implementation. An arbitrary rectangular cross-section was chosen with a width of 5 mm and 
a height of 10 mm. The material was assumed to be linear elastic with a Young's modulus of 1GPa. 
Two beam lengths were selected:100 and 1000 mm. These were modelled using hexahedra elements 
with a characteristic length of 0.5 mm, see Figure 5. In this way, no assumptions of beam behaviour 
were made in the finite element analysis, and the models were capable of handling shear 
deformations and large rotations. Note that the chosen beam dimensions are not intended to be 
representative for bridging fibres but were chosen arbitrarily to test the model. 
 
The boundary conditions were imposed by rigid bodies at both beam ends. The left rigid body (blue) 
was constrained from any movement (Figure 5). Vertical and horizontal translations were applied to 
the right rigid body (green).   
 
Three different load cases were tested for both beams: 1) no horizontal displacement of the right 
end, 2) horizontal displacement with a magnitude corresponding to 90 % of the buckling load in 2) 
tension, and 3) horizontal displacement corresponding to 90 % of the buckling load in compression, 
then all followed by vertical displacement. 
  

 
Figure 5. Finite element model of short beam capable of capturing shear deformations using hexahedra elements. 

 
These initial simulations revealed that the response of a beam is highly nonlinear when lateral 
displacements approach or exceed the height of the beam. The normal and horizontal forces in the 
long slender beam subjected to only vertical displacements are shown in Figure 6 and Figure 7, 
respectively. At a displacement of 70 mm, linear beam theory predicts a vertical force that is 
approximately 3.5 % of the force predicted by the nonlinear model. Furthermore, linear beam theory 
predicts no horizontal force, however, the horizontal force is dominant in this problem, i.e. 13 times 
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greater than the vertical force. This finding clearly demonstrates that nonlinear theory is required to 
predict the stresses and strains inside of a bridging fibre.   
 

 
Figure 6. Vertical force as function of vertical displacement in the long slender beam. 

 

 
Figure 7. Horizontal force as function of vertical displacement in the long slender beam. 

 
Figure 6 and Figure 7 demonstrate an excellent agreement between the finite element predictions 
and those of the proposed semi-analytical model for the case of a long and slender beam. However, 
some differences were observed for the short and bulky beam depicted in Figure 5. Figure 8, Figure 9 
and Figure 10 show the vertical force as function of vertical displacement for a short beam with 
compressive preload, no preload and tensile preload, respectively. The difference between the finite 
element and semi-analytical model predictions is explained by the presence of shear deformations, 
which the proposed model does not include. 
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The geometric stiffness effect is well captured by the model, although error increases due to shear as 
the tensile force increases.   
 

 
Figure 8. Vertical force in short beam preloaded in compression. 

 

 
Figure 9. Vertical force in short beam without preload. 
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Figure 10. Vertical force in short beam preloaded in tension. 
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Buckling is governed by Equation (17) while the fibre peel-off is governed by Equations (18) to (22). 
These equations were validated using a separate finite element model depicted in Figure 11. The 
input parameters are summarized in Table 1 (reference case). A single elastic circular fibre was 
attached to two rigid fracture surfaces using cohesive elements. Both fibres crossing upwards and 
downwards were modelled and subjected to combinations of vertical and horizontal displacements. 
Selected results are summarized in Figure 12. 
 
   
 

 
Figure 11. The finite element model used to validate the peel-off part of the proposed semi-analytical model. 
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Figure 12. A comparison of tangential and normal force predicted by the finite element model and the nonlinear model: (a) 
Pure mode I; (b) 𝜙𝜙 = 45°; (c) 𝜙𝜙 = 67.5°; and (d) Pure mode II. 

 
Figure 12 illustrates a very good agreement between the semi-analytical and FE models in the case of 
the predicted force level in tension and the onset bridging fibre buckling in compression. It should be 
noted that a limitation of the semi-analytical model is that the post-critical load carrying capability is 
neglected as forces are set to zero. See Figure 3 for a definition of the various forces. 
 
A comparison between predictions of the normal force acting from a single fibre on the fracture 
surfaces made with the nonlinear model, a linear model and high-fidelity FEA is shown in Figure 13. 
Comparison of model predictions of the normal force acting on the fracture surfaces from a single 
fibre using the nonlinear model, linear model and high-fidelity finite element analysis (FEA). The 
overall agreement between FEA and our non-linear model is very good. They level off at the same 
force level, as opposed to the linear model which drops monotonically and too quickly. A linear 
model will underpredict the potential that bridging fibres have to transfer tractions. The semi-
analytical model ran in a matter of seconds, while the FEA took some hours on the same PC. The FEA 
also ran into convergence issues at a normal opening displacement of approximately 0.05 mm. 
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The non-linear models seemingly reach a plateau for a single fibre. In reality, when there is a large 
number of fibres that progressively fail, the tractions would fall continuously due to fibre failures as 
shown in the next section.  
 

 
Figure 13. Comparison of model predictions of the normal force acting on the fracture surfaces from a single fibre using the 
nonlinear model, linear model and high-fidelity finite element analysis (FEA). 
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5. Parametric study 
The proposed semi-analytical model has been used in a small parameter study to demonstrate its 
usefulness for such. The parameters varied were the fracture energy of the fibre – matrix interface 
and the fibre diameter. Note, that in the case where D was scaled, so was η to reflect a constant fibre 
volume fraction. The values of the input parameters used in this study are given in Table 1. 
 
Table 1. Input parameters used to study effects of Gc and D. 

 
 
For simplicity, only pure mode-I and -II delaminations were investigated in this small study. The 
predicted bridging laws (traction-separation curves from bridging) for mode-I and mode-II are shown 
in Figure 14 and Figure 15, respectively. The energy dissipated through the bridging mechanism can 
be found by integrating the traction-separation curve. The resulting curves are shown in Figure 16 
and Figure 17. As can be seen, increasing Gc leads to a more rapid decrease in tractions and therefore 
the dissipated energy is reduced. This effect is stronger in mode-I than in mode-II.     
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Figure 14. Normal traction as function of normal opening displacement in pure mode-I delamination. 

 
Figure 15. Tangential traction as function of tangential opening displacement in pure mode-II delamination. 
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Figure 16. Energy dissipated through bridging in pure mode-I delamination. 

 

 
Figure 17. Energy dissipated through bridging in pure mode-II delamination. 
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6. Conclusions 
A novel micromechanical model for crossover fibre bridging has been developed and validated 
against a high-fidelity finite element model. The model includes the debonding of fibres from the 
matrix, buckling of bridging fibres in compression and ultimately rupture of fibres.  
 
The proposed model is based on moderately large deflection beam theory and therefore valid for the 
full range of deflections that bridging fibres are subjected to. The importance of considering large 
deflections was demonstrated for crossover fibre bridging by comparing predictions from linear and 
nonlinear models.   
 
The proposed model is semi-analytical in nature and therefore much more computationally efficient 
than a comparable FE model. This advantage allows for parametric studies to be conducted.  
 
A small parametric study was conducted to demonstrate the feasibility of using the proposed model 
in such studies. Fibre bridging was found to more greatly contribute to energy dissipation in mode-II 
than in mode-I. The most important model prediction is that increasing the fiber – matrix interface 
strength may actually decrease the delamination resistance of the laminate as fibres rupture 
prematurely.   
 
Further parametric studies should be carried out to map the effects of a larger set of variables at 
mixed modes. 
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