Identification and Reduction of Risks in Remote Operations of Offshore Oil and Gas Installations

S. O. Johnsen, M.A.Lundteigen/SINTEF H.Fartum/STATOIL John Monsen/Norsk Hydro

Technology and Society

Safety Challenges

- Introduction SINTEF
- Background
- Challenges
- Proposed solutions Further work

Technology for a better society

Technology and Society

Our partners

- The Norwegian University of Science and Technology, NTNU:
 - 20 000 full-time students
 - 973 scientific employees
- University of Oslo, UiO, Faculty of mathematics and natural sciences:
 - 4500 full-time students
 - 518 scientific employees

NTNU and the SINTEF Group Collaboration in R & D

Safety Challenges

- Introduction SINTEF
- Background
- Challenges
- Proposed solutions Further work

Background

- Remote operations and remote control of offshore Oil and Gas installations is increasing in the North Sea.
 - The main motivation is the potential for operational cost reduction and increased income or yield from the fields, but also the reduced hazard exposure to humans.
- The supporting technology related to e-Operations is maturing and creating new possibilities.
- E-Operation and remote operations/remote control has become the new "Buzz-word" – internet connection is taking place at an increasing rate

Definitions

E-Operations: The use of Information Technology to change work processes to improve decision-making, perform remote operations and move personnel (functions) from offshore to onshore – WhitePaper -38 (2003-2004)

- Other terms being used:
 - Integrated Operations, E-Field, Field of the future

Definitions

- Remote Support: The operation is managed or operated offshore, but some sort of support is being given by onshore experts via teleconferencing, video, phone or radio.
- Remote Monitoring: The operation is managed or operated offshore, but some sort of monitoring is being performed by onshore experts.
- Remote Control of Operations: The operation is managed and operated remotely, from an onshore location.

Process

Safety Challenges

- Introduction SINTEF
- Purpose and Background
- Challenges
- Proposed solutions Further work

Challenges

Many different terms and definitions are being used in remote operations and remote control.

- IEC 61508 Functional Safety of Electrical, Electronic & Programmable Electronic Safety-Related Systems
- Common Criteria, ISO 15408
- IS 17799 The ISO standard 17799 Information technology Code of practices for information security management, 2000
- Management of the change process when implementing remote operations and remote control has also been a challenge in the Oil & Gas industry
 - Failure rate of large ICT projects is between 50-75%
- Remote operation increases the need for common situational knowledge, and ability to communicate clearly and efficiently in a geographically dispersed team –
 - Need for Common mental models and common situational awareness

Important standards

Communication challenge – Human Factors

Challenges

eField of the future - Fragmented responsibility in a network of cooperating firms and different "mental models"

Internet security – Safety and Security when allowing Internet access

Increased reliance on ICT systems leads to the need for more secure and robust ICT solutions and robust emergency shutdown systems

There is a network of cooperating firms in your future

Safety Barrier Analysis

Internet Security

Application of IEC 61508 and IEC 61511 in the Norwegian Petroleum Industry

No.: 070	Date effective: October 2004	Revision no.: 02	Date revised: October 2004	

152 of 159

G.3.1.1 Connection to external systems via a Data Filtering Function

Figure G.3 Connection to external systems via a data filtering function

The Data Filtering Function may e.g. be an integrated Information Management System (IMS) or one or more PCS computers (nodes) and thus be part of the PCS.

Safety Challenges

- Introduction SINTEF
- Purpose and Background
- Challenges
- Proposed solutions Further work

Proposed solutions

Establishment of "Best Practice" Checklist related to e-Operations integrated in a methodology used in Oil & Gas industry (CRIOP)

- Enacting Scenarios in CRIOP to identify and resolve problems in a network of cooperating firms
 - Check common "mental models" and use of common standards

CRIOP (Crisis Intervention in Offshore Production)

- Goal: CRIOP is a methodology used to verify and validate the ability of a control centre to safely and effectively handle all modes of operations
 - Control Centre : Offshore/ On-shore, Remote operation, Remote support
- CRIOP has been developed by the Norwegian Oil & Gas industry and has been used since 1990 with great success
 - 2-5 workday effort
 - Significant revision in 2004

CRIOP integrated in ISO 11064 - Ergonomic design of control centres

Common Mental Models/ Industry standardisation

Common mental models between the key actors in remote operations: •situational knowledge

- knowledge about each participants roles and responsibilities
 knowledge about operating procedures, termed procedural knowledge
- •Cultural knowledge (Common goals, beliefs, norms)

Some key areas to be explored in checklist

- 1. Have- several relevant and critical scenarios been performed and analysed to ensure that the associated scenarios can be handled in a safe way?
- 2. Has the system been designed to support common mental models between all the key actors in remote operations, including common:
 - situational knowledge
 - knowledge about each participants roles and responsibilities
 - knowledge about standard operating procedures, termed procedural knowledge
 - **Cultural knowledge** (Common goals, beliefs, norms)
- **3**. Are the operators trained in cooperating with remote experts (engineers) in solving actual operating problems?
- 4. Has a safety and security standard been established in accordance with best practice from ISO 17799?

Some References

Safety and security at SINTEF www.sintef.no

http://www.risikoforsk.no/

Reliability, Safety and Security Studies http://www.ntnu.no/ross/

- at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway
- CRIOP <u>http://www.criop.sintef.no/</u>
 - CRIOP is the leading methodology to verify and validate the ability of a control center to safely and effectively handle all modes of operations

