
1

Metaheuristics on GPU

Thé Van Luong, Nouredine Melab and
El-Ghazali Talbi

DOLPHIN Project Team

April 2010

22

Local search on GPU:
From design to

implementation

3
Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of
PLSM

 Application to the Permuted Perceptron
Problem (PPP)

 Conclusion and Future Work

4

Exact Algorithms Heuristics

Branch
and X

Dynamic
programming

CP Specific heuristics Metaheuristics

Solution-based Population-based

Hill
Climbing

Simulated
Annealing

Tabu
Search

Evolutionary
Algorithms

Ant
Colony

 Exact methods : optimality but exploitation on small size problem instances

Metaheuristics : Near-optimality on larger problem instances, but …

… Need of massively parallel computing on very large instances

Exploitation-oriented Exploration-oriented

…

A taxonomy of optimization methods

5

Iteration-level
parallel model

Algorithmic-level
parallel model

Solution-level
parallel model

Parallel models for LSM

LS1

LS2

LS3

LS4

LS5
f(s1)

f(s2)

f(s3)
f(sn)

f1(sn)
fm(sn)

6

Generate a solution

Full evaluation

Select a neighbor of the
solution

Evaluation

Next neighbor ?

Replace the solution by
the chosen neighbor

STOP ?

END

Yes

No

Yes

No

Current solution

Evaluating nodes

Fitness
values

Group of
neighbors

Neighborhood
partitioning

Iteration-level parallel model

… Need of massively parallel computing on

very large neighborhoods

7
Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of
PLSM

 Application to the Permuted Perceptron
Problem (PPP)

 Conclusion and Future Work

8
GPU Computing

 Used in the past for graphics and video applications …

 … but now popular for many other applications such as
scientific computing [Owens et al. 2008]

 Publication of the CUDA development toolkit that
allows GPU programming in a C-like language [Garland
et al. 2008]

 In the metaheuristics field:

 Several existing works (Genetic algorithms [Wong 2006], Genetic
programming [Harding et al. 2009], …)

 A very light tentative for the Tabu search algorithm [Zhu et al.
2009]

9
GPU Characteristics

GPU

Constant
Memory

Texture
Memory

Global
Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

SharedMemory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

 Highly parallel multi-
threaded many-core

 High memory bandwidth
compared to CPU

 Different levels of memory
(different latencies)

10
Objective and challenges

 Re-think the iteration-level parallel model to take into
account the characteristics of GPU

 Challenges at three layers …

 CPU-GPU cooperative layer

 Work partitioning between CPU and GPU

 Data transfer optimization

 Parallelism control layer

 Neighborhood generation control (memory capacity constraints)

 Efficient mapping between candidate solutions and threads ids

 Memory management layer

 Which data on which memory (latency and capacity constraints) ?

11

Generate a solution

Full evaluation

Select a neighbor of the
solution

Evaluation

Next neighbor ?

Replace the solution by
the selected neighbor

STOP ?

END

Yes

No

Yes

No

Cooperation layer: CPUGPU data transfer

 CPU (host) controls the whole
sequential part of LSM

 GPU evaluates the neighborhood

 Objective

 Optimizing the CPUGPU data
transfer

 Issues

 Where the neighborhood is generated ?

 Two approaches:

 Approach 1: generation on CPU and
evaluation on GPU

 Approach 2: generation and evaluation
on GPU

12
Performance of the two approaches

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

n(n-1)/2
neighbors

n neighbors

Approach 1 Approach 2

13

 Objective

 Optimizing the GPUCPU data
transfer

 Issues

 Where is done the selection of the best
neighbors ?

 Two approaches:

 Approach 1: on CPU i.e. transfer of
the data structure storing the fitnesses
associated with the solutions

 Approach 2: on GPU i.e. use of the
reduction operation to select the best
solution

Cooperation layer: GPU CPU data transfer

Generate a solution

Full evaluation

Select a neighbor of the
solution

Evaluation

Next neighbor ?

Replace the solution by
the selected neighbor

STOP ?

END

Yes

No

Yes

No

14

 GPU reduction kernel to find the minimum of each block of threads

 Complexity: O(log2(n))

 Cooperation of threads of a same block through the shared memory
(latency: ~10 cycles)

 Performing iterations on reduction kernels allows to find the
minimum of all neighbors

GPU reduction to select the best solution

5 6 11 2 3 7 9 1

3 6 9 1 3 7 9 1

3 1 9 1 3 7 9 1

1 1 9 1 3 7 9 1

T0 T1 T2 T3

T0 T1

T0

5 6 11 2 3 7 9 1

S
h

a
re

d
 M

e
m

o
ry

Threads Block

15Performance of the two approaches

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73-73 81-81 101-

117

201-

217

401-

417

601-

617

801-

817

1001-

1017

1301-

1317

CPU LS Process

data transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73
-7

3

81
-8

1

10
1-

11
7

20
1-

21
7

40
1-

41
7

60
1-

61
7

80
1-

81
7

10
01

-1
01

7

13
01

-1
31

7

CPU LS process

data transfers

GPU kernel

n(n-1)/2
neighbors

n neighbors

Approach 1 Approach 2

16

 Optimizing the CPU-GPU data transfer is a must
to improve the efficiency of GPU-based LSM

 CPUGPU data transfer

 The neighborhood must be generated on GPU

 Issue: defining an efficient mapping between the
neighboring solutions and threads ids

 GPUCPU data transfer

 Avoid, if possible, the transfer of the whole data
structure storing the neighboring fitnesses

 Use of the thread reduction mechanism

Recommendation

17
Objective and challenges

 Re-think the iteration-level parallel model to take into
account the characteristics of GPU

 Challenges at three layers …

 CPU-GPU cooperative layer
 Work partitioning between CPU and GPU

 Data transfer optimization

 Parallelism control layer

 Neighborhood generation control (memory capacity constraints)

 Efficient mapping between candidate solutions and threads ids

 Memory management layer

 Which data on which memory (latency and capacity constraints) ?

18

 The parallelism control layer focuses on the
neighborhood generation and evaluation on GPU

 The kernel handling is dependent of the general-purpose
language

 The GPGPU paradigm introduces a model of threads
which provides an easy abstraction for SIMD architecture

 CUDA and OpenCL provide an application
programming interface for GPU architectures

Parallelism control layer

19

 A kernel is launched with a large number of
threads (SPMD model)

 The major issue is …

 … to control the generation of the neighborhood to
meet the memory capacity constraints

 Full evaluation

 Additional duplication of the original solution for each
thread dealing with a neighbor

  Use incremental evaluation as possible

 No additional allocated memory for each thread

Neighborhood generation control

20Grid
Block 2Block 1Block 0

Block 1

Thread 0
(id 4)

Thread 1
(id 5)

Thread 2
(id 6)

Thread 3
(id 7)

Current
solution

Generated
neighborhood

Mappings

 According to the threads
spatial organization, a unique
id must be assigned to each
thread to compute on
different data

 The challenging issue is to
find efficient mappings
between a thread id and a
particular neighbor

 Representation-dependent

Mapping
Neighbor Id  Thread Id (1)

21
53 420 1

10 010 1

10 011 1

10 010 0

10 000 1

11 010 1

10 110 1

00 010 1

A candidate solution

 A mapping is proposed for 3
well-known representations
(binary, discrete, permutation)

 Binary representation

 The thread with id=i generates and
evaluates a candidate solution by
flipping the bit number i of the
initial solution

 n threads are generated for a
solution of size n

 Fitness data structure size = n

Mapping
Neighbor Id  Thread Id (2)

id 0

id 1

id 2

id 3

id 4

id 5

22

A candidate solution

3 420 1

0 010 1

0 011 0

0 001 1

1 011 1

0 111 1

0 000 0

1 010 0

0 110 0

1 000 1

0 100 1 1 110 1

 Finding a mapping can
be challenging

 Neighborhood based on
a Hamming distance of
two

 A thread id is associated
with two indexes i and j

 n x (n-1) / 2 threads are
generated for a solution of
size n

 Fitness data structure size
= n x (n-1) / 2

Mapping
Neighbor Id  Thread Id (3)

id 0

id 1

id 2

id 3

id 4

id 5

id 6

id 7

id 8 id 9

23
Objective and challenges

 Re-think the iteration-level parallel model to take into
account the characteristics of GPU

 Challenges at three layers …

 CPU-GPU cooperative layer
 Work partitioning between CPU and GPU

 Data transfer optimization

 Parallelism control layer

 Neighborhood generation control (memory capacity constraints)

 Efficient mapping between candidate solutions and threads Ids

 Memory management layer

 Which data on which memory (latency and capacity constraints) ?

24Memory management layer

Memory type Speed Size

Global Slow Big

Registers Very fast Very small

Local Slow Up to Global
memory

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

GPU

Constant Memory

Texture Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

SharedMemory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

Global Memory (Data inputs and current solution
representation)

25

 Threads SPMD model (shared generation and
evaluation function code)

 Global Memory is not cached

Accesses (read/write operations) must be minimized

 Non-coalesced accesses to Global Memory

Use of Texture Memory

Memory management layer

26

sum[id] = 0;
for (int i = 0; i < m; i++) {

sum[id] += A[i * n + id] * B[id];
}

sum[0] = A[i * n + 0] * B[0]
sum[1] = A[i * n + 1] * B[1]
sum[2] = A[i * n + 2] * B[2]
sum[3] = A[i * n + 3] * B[3]
sum[4] = A[i * n + 4] * B[4]
sum[5] = A[i * n + 5] * B[5]

SIMD: 1 memory transaction

Address148

Address144

Address140

Address136

Address132

Address128

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory access pattern

Memory coalescing

Coalescing accesses to global memory (matrix vector product)

27

sum[id] = 0;
for (int i = 0; i < m; i++) {
sum[id] += A[i * n + id] * B[p[id]];

}

53 420 1

05 413 2

sum[0] = A[i * n + 0] * B[3]
sum[1] = A[i * n + 1] * B[2]
sum[2] = A[i * n + 2] * B[1]
sum[3] = A[i * n + 3] * B[5]
sum[4] = A[i * n + 4] * B[4]
sum[5] = A[i * n + 5] * B[0]

p

Uncoalesced accesses to global memory for evaluation functions

6 memory transactions

Address148

Address144

Address140

Address136

Address132

Address128

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory access pattern

Memory coalescing

GPUcomputing

TheuseofGPU-basedparallelcomputingisrequiredasa

complementarywaytospeedupthesearch.

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Because of LS methods structures,
memory coalescing is difficult to
realize

 it can lead to a significantly
performance decrease.

28

 Graphic cards provide also read-only texture memory
to accelerate operations such as 2D or 3D mapping.

 In the case of LS algorithms, binding texture on global
memory can provide an alternative optimization.

 Conditions of use
• Read-only input data problems.
• Read-only candidate solution for generating

neighborhood.
• Small amount of memory of input data structures to

take advantage of the 8KB cache per multiprocessor of
texture units.

Use of Texture Memory

29
Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of
PLSM

 Application to the Permuted Perceptron
Problem (PPP)

 Conclusion and Future Work

30

Permuted Perceptron Problem (PPP)

An ε-vector (resp. ε-matrix) is a vector (resp.
matrix) with all entries being either +1 or -1

Definition of PPP
– Given an ε-matrix A of size m x n and a multi-set S of

non negative integers of size m …

– find an ε-vector V of size n such that {{(AV)j / j =
{1,…,m}}} = S

31

1 1 1 -1

1 1 -1 -1

1 -1 1 -1

2

0

4

v1

v2

v3

v4

A S

V

Public key

Private key

Message

• Cryptographic identification scheme

• Protocol well-suited for resource
constrained devices such as smart
cards

Illustration

32

Parameter settings

Hardware configurations
 Configuration 1: laptop

 Core 2 Duo 2 Ghz + 8600M GT 4 multiprocessors (32 cores)

 Configuration 2 : desktop-computer
 Core 2 Quad 2.4 Ghz + 8800 GTX 16 multiprocessors (128 cores)

 Configuration 3 : video games computer
 Intel Xeon 3 Ghz + GTX 280 30 multiprocessors (240 cores)

 Tabu Search and PPP parameters
 Neighborhood generation and evaluation on GPU

 Binary representation for PPP

 100.000 iterations, 10 runs

 Size of the neighborhood = size of V = n

Number of threads/block is not enough to cover the memory access latency

101-117
201-217 401-417

601-617
801-817 1001-1117

1301-1317

0

1

2

3

4

5

6

7

8

9

A
c

c
e

le
ra

ti
o

n
 f

a
c

to
r

Neighborhood based on a Hamming distance of one

8600

8600 tex

8800

8800 tex

GT 280

GT 280 tex

CPU

34

 Size of the neighborhood = n x (n-1) / 2

 Better acceleration

101-117 201-217 401-417

601-617
801-817 1001-1017 1301-1317

0

2

4

6

8

10

12

A
c
c
e
le

ra
ti

o
n

 f
a
c
to

r
Neighborhood based on a hamming distance of two

8600

8600 tex

8800

CPU

35

 Size of the neighborhood = n x (n-1) / 2

 Better acceleration

101-117 201-217 401-417 601-617 801-817 1001-1117 1301-13170

5

10

15

20

25

30

35

40

45

50

A
c
c
e
le

ra
ti

o
n

 f
a
c
to

r
Neighborhood based on a Hamming distance of two

8600

8600 tex

8800

8800 tex

GT 280

GT 280 tex

36
Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of
PLSM

 Application to the Permuted Perceptron
Problem (PPP)

 Conclusion and Future Work

37

 GPU-based LSM requires to re-design the parallel models
(e.g. Iteration-level parallel model)

 Generation of the neighborhood on the GPU side to minimize the
CPUGPU data transfer

 If possible, thread reduction for the best solution selection to
minimize the GPUCPU data transfer

 Efficient thread control: mapping neighboring onto threads
ids, efficient kernel for fitness evaluation – incremental evaluation

 Efficient memory management (e.g. use of texture memory)

 For problem instances with costly evaluation function and
a large neighborhood set …

… speed-ups from experiments provide promising results
(up to x45 with texture memory)

Conclusion and Future Work (1)

38

 Extensions for LSM

 Other problems such as TSP, QAP, Q3AP or Golomb rulers (up
to x15, x20, x30 and x40)

 Other data representations and mappings

 Other memory and thread optimizations

 Integration of the contribution in our ParadisEO
software framework (http://paradiseo.gforge.inria.fr)

Conclusion and Future Work (2)

39

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Local Search
Algorithms on Graphics Processing Units. A Case Study: the
Permutation Perceptron Problem. 10th European Conference on
Evolutionary Computation in Combinatorial Optimisation
(EvoCOP), Istanbul, Turkey, 2010 (nominated for the best paper award)

Conclusion and Future Work (3)

4040

Other works
on GPU

41

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Large
Neighborhood Local Search Optimization on Graphics
Processing Units. 23rd IEEE International Parallel & Distributed
Processing Symposium (IPDPS), Workshop on Large-Scale Parallel
Processing (LSPP), Atlanta, US, 2010

Extensions of PPP

 Extensions for LSM

 Larger neighborhoods

 Other mappings between threads and neighbors

 Measures of the effectiveness (quality of the solutions)

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 10.3 10.8 20.2 16.4

iterations 59184 77321 166650 260130

solutions 10/50 6/50 0/50 0/50

CPU time 4 s 6 s 16 s 29 s

GPU time 9 s 13 s 33 s 57 s

Acceleration x 0.44 x 0.46 x 0.48 x 0.51

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 16.4 15.5 14.2 13.8

iterations 43031 67462 138349 260130

solutions 19/50 13/50 12/50 0/50

CPU time 81 s 174 s 748 s 1947 s

GPU time 8 s 16 s 44 s 105 s

Acceleration x 9.9 x 11.0 x 17.0 x 18.5

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 2.4 3.5 6.2 7.7

iterations 21360 43231 117422 255337

solutions 35/50 28/50 18/50 1/50

CPU time 1202 s 3730 s 24657 s 88151 s

GPU time 50 s 146 s 955 s 3551 s

Acceleration x 24.2 x 25.5 x 25.8 x 24.8

Neighborhood based on a

Hamming distance of one

Tabu search

n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a

Hamming distance of two

Tabu search

n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a

Hamming distance of three

Tabu search

n x (n-1) x (n-2) / 6 iterations

 Perspectives

 Variable neighborhood search for an arbitrary number of
neighborhoods

 Issue: find a mapping between threads and neighbors …

 … construct efficient lookup tables on global memory for mappings

move_id move_first move_second

0 0 1

1 0 2

2 0 3

3 1 2

4 1 3

5 2 3

T0

T1

T2

T3

T4

T5

Global memory

Lookup table

44

Thé Van Luong, Lakhdar Loukil, Nouredine Melab, El-Ghazali
Talbi. A GPU-based Iterated Tabu Search for Solving the
Quadratic 3-dimensional Assignment Problem. ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA), Workshop on Parallel Optimization in Emerging
Computing Environments (POECE), Hammamet, Tunisia, 2010

Application to the Q3AP

 Extensions for LSM

Other data representations and mappings

Other memory and thread optimizations

 The GPU allows the design of an efficient and large
neighborhood

45

20 1

23 1

21 3

32 1 13 2

A candidate solution

Its associated neighborhood

20 1

32 1

32 1

23 1 12 3

31 220 1

23 1

p q

p

p p

q

q

q q

p

+

+

+

State-of-the-art neighborhood

46

20 1
23 1

13 2

21 3

32 1

A candidate solution

Its associated neighborhood

20 1
32 1p q

p

p p
+

+

31 2

23 1 12 3

q

qq

21 3

32 1 13 2

p

p p
+

13 2

21 3

32 1

p

p p
+

31 2q 23 1q

12 3q
21 3

p

+

31 2

23 1 12 3

q

qq+32 1p

31 2

23 1

q

q+ 12 3q

13 2p

Advanced neighborhood

47

Comparison of the neighborhoods

48

Instance Nug12 Nug13 Nug15 Nug18 Nug22

Best known value 580 1912 2230 17836 42476

Average value 580 1918 2230 17874 42476

Max value 604 1974 2230 18026 42476

solutions 49/50 37/50 50/50 31/50 50/50

CPU time 256 s 1879 s 1360 s 17447 s 16147 s

GPU time 15 s 64 s 38 s 415 s 353 s

Acceleration x 17.3 x 29.2 x 36.0 x 42.0 x 45.7

ILS iteration 18 57 15 59 15

Results of Q3AP

• Iterative local search (100 iters) + tabu search (5000 iters)
• Competitive algorithm
• Unpractical on CPU

49

Algorithmic-level: multi-GPUs

Create

Join

CPU thread 1

Local
search

on GPU

CPU thread 2

Local
search

on GPU

CPU thread n

Local
search

on GPU

• Multi-core: OpenMP
and posix threads

• Distributed: MPI

50

tai30a tai35a tai40a
tai50a

tai60a

tai80a
tai100a

0

5

10

15

20

25

30

35

A
c
c
e
le

ra
ti

o
n

 f
a
c
to

r

GT 280

GT 280 tex

2 GT 280

2 GT 280 tex

Measures of the efficiency on the quadratic assignment problem
20 multi-start tabu search – 100000 iterations

51

Measures of the effectiveness on the quadratic assignment problem

21450000

21950000

22450000

22950000

23450000

23950000

1 41 81 121 161 201 241

fi
tn

e
ss

e
s

iterations

TS CPU

multi-start GPU

Evolution of the fitness of tai100a
1 TS CPU VS multi-start 30 TS GPU

TS CPU
21430644

Multi-start GPU
21397125

52

 Perspectives

 To be submitted …

Need a cluster of GPUs for testing MPI experiments

 Full distribution of the algorithmic-level on GPU

 one GPU thread = one local search (hill-climbing, simulated
annealing, …)

 Issue for the tabu search algorithm (management of the tabu list
on GPU)

53

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based
Parallel Hybrid Evolutionary Algorithms. IEEE Congress on
Evolutionary Computation (CEC), Barcelona, Spain, 2010

 Extensions for LSM

 Combination of local searches and evolutionary algorithms

 The GPU allows to design sophisticate algorithms

Hybrid evolutionary algorithms

54

Initialization

Parents Evaluation

Selection

Crossover

Mutation

Offspring
Evaluation

Replacement

End ?

I0 I1 I2 In

no

yes

CPU

Individuals

Incremental
evaluation

0 1 2 3 … m

Init a solution

End ?
no

Full Evaluation

Solution
Replacement

yes

T0 T1 T2 Tm

Evaluation function

GPU

Threads Block

G
lo

b
a

l M
e

m
o

ry
g

lo
b

a
l so

lu
tio

n
, g

lo
b

a
l

fitn
e

sse
s, d

a
ta

 in
p

u
ts

copy solution

copy fitnesses structure

Local search

Hybridization scheme

55

Instance tai30a tai35a tai40a tai50a tai60a tai80a tai100a

Best known
value

1818146 2522002 3139370 4938796 7205962 13511780 21052466

Average value 1818442 2422437 3146480 4961202 7241224 13605896 21190794

solutions 27/30 23/30 18/30 10/30 6/30 4/30 2/30

CPU time 1h15min 2h24min 3h54min 10h2min 20h17min 66h 177h

GPU time 8min50s 12min56s 18min16s 45min 1h30min 4h45min 12h6min

Acceleration x 8.5 x 11.1 x 12.8 x 13.2 x 13.4 x 13.8 x 14.6

• 10 individuals – 10 generations
• Evolutionary algorithm + iterative local search (3 iters) + tabu search
(10000 iters)
• Neighborhood based on a 3-exchange operator
• Competitive algorithm

Results on QAP

56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

Instances

Percentage of the total running time

CPU hybrid process

data transfers

GPU evaluation kernel

 Perspectives

 Full distribution of the hybrid evolutionary algorithm on GPU

 Issue for the tabu search algorithm (management of the tabu list
on GPU)

Does it worth parallelizing ?

57

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Island
Model for Evolutionary Algorithms. Genetic and Evolutionary
Computation Conference (GECCO), Portland, US, 2010

 Extensions for EAs

 3 schemes of the island model for evolutionary algorithms

 EAs well-suited for continous optimization problems

GPU-based island model for EAs

58

Evolutionary
algorithm

Migration

Evolutionary
algorithm

Evolutionary
algorithm

Evolutionary
algorithm

Need to re-design on GPU:
• Exchange topology
• Emigrants selection policy
• Replacement/Integration policy
• Migration decision criterion

Island model for EAs

59

Parallel evaluation of each island

Initialization

Parents Evaluation

Selection

Crossover

Mutation

Offspring Evaluation

Replacement

End ?

Migration ?

T0 T1 T2 Tn

Evaluation function

I0 I1 I2 In

no

yes

CPU

GPU
Individuals

Threads Block

G
lo

b
a

l M
e

m
o

ry
g

lo
b

a
l p

o
p

u
la

tio
n

, g
lo

b
a

l
fitn

e
sse

s, a
u

x
ilia

ry
 stru

ctu
re

s

copy

copy

60
Full distribution on GPU

Initialization

Parents Evaluation

Selection

Crossover

Mutation

Offspring Evaluation

Replacement

End ?

Migration ?

T0 T1 T2 Tn

no

yes

GPU

G
lo

b
a

l M
e

m
o

ry
g

lo
b

a
l p

o
p

u
la

tio
n

, g
lo

b
a

l fitn
e

sse
s, a

u
x

ilia
ry

 stru
ctu

re
s

Threads Block

 One threads block represents
one island

 Possible issues

 Sort the population of each island

 Find the minimum of the
population of each island

 Threads synchronization
(synchronous migration)

Generation of random numbers

61
Migration on GPU

T0 T1 TnTn-1T2

Shared Memory

I0 I1 InIn-1I2

Threads Block -> island i

I0 I1 InIn-1I2 I0 I1 InIn-1I2

2 bests 2 worsts

T0 T1 TnTn-1T2

Shared Memory

I0 I1 InIn-1I2

Threads Block -> island i+1

2 bests 2 worsts

Global Memory

Population of island i Population of island i+1

migration migration migration

co
p

y

co
p

y

co
p

y

62

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11

S
p

ee
d

-u
p

Instance size

Varying the dimension of the problem

(64 islands – 128 individuals per island)

CPU+GPU

SGPU

AGPU

Results for the Weierstrass function (1)

63

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

S
p

ee
d

-u
p

Instance size

Varying the dimension size of the problem
(64 islands – 128 individuals per island)

CPU+ GPU

SGPU

AGPU

SGPUShared

AGPUShared

Results for the Weierstrass function (1)

64

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

S
p

ee
d

-u
p

Number of islands

Varying the number of islands

(dimension of the problem: 2 – 128 individuals per island)

CPU+GPU

SGPU

SGPUShared

Results for the Weierstrass function (2)

65

Results for the Weierstrass function (2)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

A
cc

el
er

at
io

n
 f

ac
to

r

Number of islands

Varying the number of islands

(dimension of the problem: 2 – 128 individuals per island)

CPU+GPU

SGPU

SGPUShared

AGPU

AGPUShared

66

0

1

2

3

4

5

6

7

1 6 11 16 21 26 31 36 41 46 51 56

F
it

n
es

s

Time

CPU

CPU + GPU

SGPU

SGPUShared

Weierstrass-Mandelbrot function (3)

Measures of the quality of the solutions
(dimension of the problem: 10 – 64 islands – 128 individuals per island)

67

Algorithm Parameters Limitation
of the local
population

size

Limitation
of the

instance
size

Limitation
of the total
population

size

Speed

CPU Heterogeneous Not limited Very Low Very Low Slow

CPU+GPU Heterogeneous Not limited Low Low Fast

GPU Homogeneous Size of a
threads
block

Low Medium Very Fast

GPU
Shared

Homogeneous Limited to
shared

memory

Limited to
shared

memory

Medium Lightning
Fast

Pros and cons

68

 Perspectives

Define sophisticate island topologies

Multi-GPU approach for the island model for EAs

 Extension of the island model for estimation of distribution
algorithm (EDA) and particle swarm optimization (PSO)

69

THANK YOU FOR YOUR
ATTENTION

