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Local search on GPU:
From design to 

implementation
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Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of 
PLSM

 Application to the Permuted Perceptron 
Problem (PPP)

 Conclusion and Future Work
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Exact Algorithms Heuristics

Branch
and X

Dynamic 
programming

CP Specific heuristics Metaheuristics

Solution-based Population-based

Hill 
Climbing

Simulated 
Annealing

Tabu 
Search

Evolutionary 
Algorithms

Ant 
Colony

 Exact methods : optimality but exploitation on small size problem instances

Metaheuristics : Near-optimality on larger problem instances, but …

… Need of massively parallel computing on very large instances 

Exploitation-oriented Exploration-oriented

…

A taxonomy of optimization methods
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Iteration-level 
parallel model

Algorithmic-level 
parallel model

Solution-level 
parallel model

Parallel models for LSM

LS1

LS2

LS3

LS4

LS5
f(s1)

f(s2)

f(s3)
f(sn)

f1(sn)
fm(sn)
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Generate a solution

Full evaluation

Select a neighbor of the 
solution

Evaluation

Next neighbor ?

Replace the solution by 
the chosen neighbor

STOP ?

END

Yes

No

Yes

No

Current solution

Evaluating nodes

Fitness 
values

Group of 
neighbors

Neighborhood
partitioning

Iteration-level parallel model

… Need of massively parallel computing on 

very large neighborhoods
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 Conclusion and Future Work
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GPU Computing

 Used in the past for graphics and video applications …

 … but now popular for many other applications such as 
scientific computing [Owens et al. 2008]

 Publication of the CUDA development toolkit that 
allows GPU programming in a C-like language [Garland 
et al. 2008]

 In the metaheuristics field:

 Several existing works (Genetic algorithms [Wong 2006], Genetic 
programming [Harding et al. 2009], …)

 A very light tentative for the Tabu search algorithm [Zhu et al. 
2009]
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GPU Characteristics

GPU

Constant
Memory

Texture
Memory

Global
Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

SharedMemory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

 Highly parallel multi-
threaded many-core

 High memory bandwidth 
compared to CPU

 Different levels of memory 
(different latencies)
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Objective and challenges

 Re-think the iteration-level parallel model to take into 
account the characteristics of GPU

 Challenges at three layers …

 CPU-GPU cooperative layer

 Work partitioning between CPU and GPU

 Data transfer optimization

 Parallelism control layer

 Neighborhood generation control (memory capacity constraints)

 Efficient mapping between candidate solutions and threads ids

 Memory management layer

 Which data on which memory (latency and capacity constraints) ?
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Generate a solution

Full evaluation

Select a neighbor of the 
solution

Evaluation

Next neighbor ?

Replace the solution by 
the selected neighbor

STOP ?

END

Yes

No

Yes

No

Cooperation layer: CPUGPU data transfer

 CPU (host) controls the whole 
sequential part of LSM

 GPU evaluates the neighborhood

 Objective

 Optimizing the CPUGPU data 
transfer

 Issues

 Where the neighborhood is generated ?

 Two approaches:

 Approach 1: generation on CPU and 
evaluation on GPU

 Approach 2: generation and evaluation 
on GPU
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Performance of the two approaches
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 Objective

 Optimizing the GPUCPU data 
transfer

 Issues

 Where is done the selection of the best 
neighbors ?

 Two approaches:

 Approach 1: on CPU i.e. transfer of 
the data structure storing the fitnesses 
associated with the solutions 

 Approach 2: on GPU i.e. use of the 
reduction operation to select the best 
solution

Cooperation layer: GPU CPU data transfer

Generate a solution

Full evaluation

Select a neighbor of the 
solution

Evaluation

Next neighbor ?

Replace the solution by 
the selected neighbor

STOP ?

END

Yes

No

Yes

No
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 GPU reduction kernel to find the minimum of each block of threads

 Complexity: O(log2(n))

 Cooperation of threads of a same block through the shared memory 
(latency: ~10 cycles) 

 Performing iterations on reduction kernels allows to find the 
minimum of all neighbors

GPU reduction to select the best solution

5 6 11 2 3 7 9 1

3 6 9 1 3 7 9 1

3 1 9 1 3 7 9 1

1 1 9 1 3 7 9 1

T0 T1 T2 T3

T0 T1

T0

5 6 11 2 3 7 9 1

S
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o
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Threads Block
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 Optimizing the CPU-GPU data transfer is a must 
to improve the efficiency of GPU-based LSM

 CPUGPU data transfer

 The neighborhood must be generated on GPU

 Issue: defining an efficient mapping between the 
neighboring solutions and threads ids

 GPUCPU data transfer

 Avoid, if possible, the transfer of the whole data 
structure storing the neighboring fitnesses

 Use of the thread reduction mechanism

Recommendation
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Objective and challenges

 Re-think the iteration-level parallel model to take into 
account the characteristics of GPU

 Challenges at three layers …

 CPU-GPU cooperative layer
 Work partitioning between CPU and GPU

 Data transfer optimization

 Parallelism control layer

 Neighborhood generation control (memory capacity constraints)

 Efficient mapping between candidate solutions and threads ids

 Memory management layer

 Which data on which memory (latency and capacity constraints) ?
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 The parallelism control layer focuses on the 
neighborhood generation and evaluation on GPU

 The kernel handling is dependent of the general-purpose 
language

 The GPGPU paradigm introduces a model of threads 
which provides an easy abstraction for SIMD architecture 

 CUDA and OpenCL provide an application 
programming interface for GPU architectures

Parallelism control layer
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 A kernel is launched with a large number of 
threads (SPMD model)

 The major issue is …

 … to control the generation of the neighborhood to 
meet the memory capacity constraints 

 Full evaluation

 Additional duplication of the original solution for each 
thread dealing with a neighbor 

  Use incremental evaluation as possible

 No additional allocated memory for each thread

Neighborhood generation control
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Block 2Block 1Block 0

Block 1

Thread 0 
(id 4) 

Thread 1 
(id 5)

Thread 2 
(id 6)

Thread 3 
(id 7)

Current 
solution

Generated
neighborhood

Mappings

 According to the threads 
spatial organization, a unique 
id must be assigned to each 
thread to compute on 
different data

 The challenging issue is to 
find efficient mappings 
between a thread id and a 
particular neighbor

 Representation-dependent

Mapping 
Neighbor Id  Thread Id (1)
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53 420 1

10 010 1

10 011 1

10 010 0

10 000 1

11 010 1

10 110 1

00 010 1

A candidate solution

 A mapping is proposed for 3 
well-known representations 
(binary, discrete, permutation)

 Binary representation

 The thread with id=i generates and 
evaluates a candidate solution by 
flipping the bit number i of the 
initial solution

 n threads are generated for a 
solution of size n

 Fitness data structure size = n

Mapping 
Neighbor Id  Thread Id (2)

id 0 

id 1 

id 2 

id 3 

id 4 

id 5 
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A candidate solution

3 420 1

0 010 1

0 011 0

0 001 1

1 011 1

0 111 1

0 000 0

1 010 0

0 110 0

1 000 1

0 100 1 1 110 1

 Finding a mapping can 
be challenging

 Neighborhood based on 
a Hamming distance of 
two

 A thread id is associated 
with two indexes i and j

 n x (n-1) / 2 threads are 
generated for a solution of 
size n

 Fitness data structure size 
= n x (n-1) / 2

Mapping 
Neighbor Id  Thread Id (3)

id 0

id 1

id 2

id 3

id 4

id 5

id 6

id 7

id 8 id 9
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Objective and challenges

 Re-think the iteration-level parallel model to take into 
account the characteristics of GPU

 Challenges at three layers …

 CPU-GPU cooperative layer
 Work partitioning between CPU and GPU

 Data transfer optimization

 Parallelism control layer

 Neighborhood generation control (memory capacity constraints)

 Efficient mapping between candidate solutions and threads Ids

 Memory management layer

 Which data on which memory (latency and capacity constraints) ?



24Memory management layer

Memory type Speed Size

Global Slow Big

Registers Very fast Very small

Local Slow Up to Global 
memory

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

GPU

Constant Memory

Texture Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

SharedMemory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

Global Memory (Data inputs and current solution 
representation)
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 Threads SPMD model (shared generation and 
evaluation function code)

 Global Memory is not cached 

Accesses (read/write operations) must be minimized 

 Non-coalesced accesses to Global Memory

Use of Texture Memory

Memory management layer
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sum[id] = 0;
for (int i = 0; i < m; i++) {

sum[id] += A[i * n + id] * B[id];
}

sum[0] = A[i * n + 0] * B[0]
sum[1] = A[i * n + 1] * B[1]
sum[2] = A[i * n + 2] * B[2]
sum[3] = A[i * n + 3] * B[3]
sum[4] = A[i * n + 4] * B[4]
sum[5] = A[i * n + 5] * B[5]

SIMD: 1 memory transaction

Address148

Address144

Address140

Address136

Address132

Address128

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory access pattern

Memory coalescing

Coalescing accesses to global memory (matrix vector product)



27

sum[id] = 0;
for (int i = 0; i < m; i++) {
sum[id] += A[i * n + id ] * B[p[id]];

}

53 420 1

05 413 2

sum[0] = A[i * n + 0] * B[3]
sum[1] = A[i * n + 1] * B[2]
sum[2] = A[i * n + 2] * B[1]
sum[3] = A[i * n + 3] * B[5]
sum[4] = A[i * n + 4] * B[4]
sum[5] = A[i * n + 5] * B[0]

p

Uncoalesced accesses to global memory for evaluation functions

6 memory transactions

Address148

Address144

Address140

Address136

Address132

Address128

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory access pattern

Memory coalescing

GPUcomputing

TheuseofGPU-basedparallelcomputingisrequiredasa

complementarywaytospeedupthesearch.

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Because of LS methods structures,  
memory coalescing is difficult to 
realize

 it can lead to a significantly 
performance decrease.
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 Graphic cards provide also read-only texture memory 
to accelerate operations such as 2D or 3D mapping.

 In the case of LS algorithms, binding texture on global 
memory can provide an alternative optimization.

 Conditions of use
• Read-only input data problems.
• Read-only candidate solution for generating 

neighborhood.
• Small amount of memory of input data structures to 

take advantage of the 8KB cache per multiprocessor of 
texture units.

Use of Texture Memory
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Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of 
PLSM

 Application to the Permuted Perceptron 
Problem (PPP)

 Conclusion and Future Work
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Permuted Perceptron Problem (PPP)

An ε-vector (resp. ε-matrix) is a vector (resp. 
matrix) with all entries being either +1 or -1

Definition of PPP
– Given an ε-matrix A of size m x n and a multi-set S of 

non negative integers of size m …

– find an ε-vector V of size n such that {{(AV)j / j = 
{1,…,m}}} = S
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1 1 1 -1

1 1 -1 -1

1  -1 1 -1

2

0

4

v1

v2

v3

v4

A S

V

Public key

Private key

Message

• Cryptographic identification scheme

• Protocol well-suited for resource 
constrained devices such as smart 
cards

Illustration
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Parameter settings

Hardware configurations
 Configuration 1: laptop

 Core 2 Duo 2 Ghz + 8600M GT 4 multiprocessors (32 cores)

 Configuration 2 : desktop-computer
 Core 2 Quad 2.4 Ghz + 8800 GTX 16 multiprocessors (128 cores)

 Configuration 3 : video games computer
 Intel Xeon 3 Ghz + GTX 280 30 multiprocessors (240 cores)

 Tabu Search and PPP parameters
 Neighborhood generation and evaluation on GPU

 Binary representation for PPP 

 100.000 iterations, 10 runs



 Size of the neighborhood = size of V = n

Number of threads/block is not enough to cover the memory access latency
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 Size of the neighborhood = n x (n-1) / 2

 Better acceleration
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 Size of the neighborhood = n x (n-1) / 2

 Better acceleration

101-117 201-217 401-417 601-617 801-817 1001-1117 1301-13170

5

10

15

20

25

30

35

40

45

50

A
c
c
e
le

ra
ti

o
n

 f
a
c
to

r
Neighborhood based on a Hamming distance of two

8600

8600 tex

8800

8800 tex

GT 280

GT 280 tex



36
Outline

 Parallel Local Search Metaheuristics (PLSM)

 GPU-based Design and Implementation of 
PLSM

 Application to the Permuted Perceptron 
Problem (PPP)

 Conclusion and Future Work



37

 GPU-based LSM requires to re-design the parallel models 
(e.g. Iteration-level parallel model)

 Generation of the neighborhood on the GPU side to minimize the 
CPUGPU data transfer

 If possible, thread reduction for the best solution selection to 
minimize the GPUCPU data transfer

 Efficient thread control: mapping neighboring onto threads 
ids, efficient kernel for fitness evaluation – incremental evaluation

 Efficient memory management (e.g. use of texture memory) 

 For problem instances with costly evaluation function and 
a large neighborhood set … 

… speed-ups from experiments provide promising results 
(up to x45 with texture memory)

Conclusion and Future Work (1)
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 Extensions for LSM 

 Other problems such as TSP, QAP, Q3AP or Golomb rulers (up 
to x15, x20, x30 and x40)

 Other data representations and mappings

 Other memory and thread optimizations 

 Integration of the contribution in our ParadisEO 
software framework (http://paradiseo.gforge.inria.fr)

Conclusion and Future Work (2)
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Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Local Search 
Algorithms on Graphics Processing Units. A Case Study: the 
Permutation Perceptron Problem. 10th European Conference on 
Evolutionary Computation in Combinatorial Optimisation 
(EvoCOP), Istanbul, Turkey, 2010 (nominated for the best paper award)

Conclusion and Future Work (3)
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Other works
on GPU
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Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Large 
Neighborhood Local Search Optimization on Graphics 
Processing Units. 23rd IEEE International Parallel & Distributed 
Processing Symposium (IPDPS), Workshop on Large-Scale Parallel 
Processing (LSPP), Atlanta, US, 2010

Extensions of PPP

 Extensions for LSM 

 Larger neighborhoods

 Other mappings between threads and neighbors

 Measures of the effectiveness (quality of the solutions)



Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 10.3 10.8 20.2 16.4 

# iterations 59184 77321 166650 260130

# solutions 10/50 6/50 0/50 0/50

CPU time 4 s 6 s 16 s 29 s

GPU time 9 s 13 s 33 s 57 s

Acceleration x 0.44 x 0.46 x 0.48 x 0.51

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 16.4 15.5 14.2 13.8 

# iterations 43031 67462 138349 260130

# solutions 19/50 13/50 12/50 0/50

CPU time 81 s 174 s 748 s 1947 s

GPU time 8 s 16 s 44 s 105 s

Acceleration x 9.9 x 11.0 x 17.0 x 18.5

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 2.4 3.5 6.2 7.7 

# iterations 21360 43231 117422 255337

# solutions 35/50 28/50 18/50 1/50

CPU time 1202 s 3730 s 24657 s 88151 s

GPU time 50 s 146 s 955 s 3551 s

Acceleration x 24.2 x 25.5 x 25.8 x 24.8

Neighborhood based on a 

Hamming distance of one

Tabu search

n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a 

Hamming distance of two

Tabu search

n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a 

Hamming distance of three

Tabu search

n x (n-1) x (n-2) / 6 iterations



 Perspectives

 Variable neighborhood search for an arbitrary number of 
neighborhoods

 Issue: find a mapping between threads and neighbors …

 … construct efficient lookup tables on global memory for mappings

move_id move_first move_second

0 0 1

1 0 2

2 0 3

3 1 2

4 1 3

5 2 3

T0

T1

T2

T3

T4

T5

Global memory

Lookup table
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Thé Van Luong, Lakhdar Loukil, Nouredine Melab, El-Ghazali 
Talbi. A GPU-based Iterated Tabu Search for Solving the 
Quadratic 3-dimensional Assignment Problem. ACS/IEEE 
International Conference on Computer Systems and Applications 
(AICCSA), Workshop on Parallel Optimization in Emerging 
Computing Environments (POECE), Hammamet, Tunisia, 2010

Application to the Q3AP

 Extensions for LSM 

Other data representations and mappings

Other memory and thread optimizations 

 The GPU allows the design of an efficient and large 
neighborhood
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A candidate solution

Its associated neighborhood
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Comparison of the neighborhoods
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Instance Nug12 Nug13 Nug15 Nug18 Nug22

Best known value 580 1912 2230 17836 42476

Average value 580 1918 2230 17874 42476

Max value 604 1974 2230 18026 42476

# solutions 49/50 37/50 50/50 31/50 50/50

CPU time 256 s 1879 s 1360 s 17447 s 16147 s

GPU time 15 s 64 s 38 s 415 s 353 s

Acceleration x 17.3 x 29.2 x 36.0 x 42.0 x 45.7

ILS iteration 18 57 15 59 15 

Results of Q3AP

• Iterative local search (100 iters) + tabu search (5000 iters) 
• Competitive algorithm
• Unpractical on CPU
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Algorithmic-level: multi-GPUs

Create

Join

CPU thread 1

Local 
search

on GPU

CPU thread 2

Local 
search

on GPU

CPU thread n

Local 
search

on GPU

• Multi-core: OpenMP 
and posix threads

• Distributed: MPI
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20 multi-start tabu search – 100000 iterations
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Measures of the effectiveness on the quadratic assignment problem

21450000

21950000
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 Perspectives

 To be submitted …

Need a cluster of GPUs for testing MPI experiments

 Full distribution of the algorithmic-level on GPU 

 one GPU thread = one local search (hill-climbing, simulated 
annealing, …)

 Issue for the tabu search algorithm (management of the tabu list 
on GPU)
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Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based 
Parallel Hybrid Evolutionary Algorithms. IEEE Congress on 
Evolutionary Computation (CEC), Barcelona, Spain, 2010

 Extensions for LSM 

 Combination of local searches and evolutionary algorithms

 The GPU allows to design sophisticate algorithms

Hybrid evolutionary algorithms
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Instance tai30a tai35a tai40a tai50a tai60a tai80a tai100a

Best known 
value

1818146 2522002 3139370 4938796 7205962 13511780 21052466

Average value 1818442 2422437 3146480 4961202 7241224 13605896 21190794

# solutions 27/30 23/30 18/30 10/30 6/30 4/30 2/30

CPU time 1h15min 2h24min 3h54min 10h2min 20h17min 66h 177h

GPU time 8min50s 12min56s 18min16s 45min 1h30min 4h45min 12h6min

Acceleration x 8.5 x 11.1 x 12.8 x 13.2 x 13.4 x 13.8 x 14.6

• 10 individuals – 10 generations
• Evolutionary algorithm + iterative local search (3 iters) + tabu search  
(10000 iters)
• Neighborhood based on a 3-exchange operator
• Competitive algorithm

Results on QAP
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 Perspectives

 Full distribution of the hybrid evolutionary algorithm on GPU 

 Issue for the tabu search algorithm (management of the tabu list 
on GPU)

Does it worth parallelizing ?
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Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Island 
Model for Evolutionary Algorithms. Genetic and Evolutionary 
Computation Conference (GECCO), Portland, US, 2010

 Extensions for EAs

 3 schemes of the island model for evolutionary algorithms

 EAs well-suited for continous optimization problems

GPU-based island model for EAs
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Evolutionary
algorithm

Migration

Evolutionary
algorithm

Evolutionary
algorithm

Evolutionary
algorithm

Need to re-design on GPU:
• Exchange topology
• Emigrants selection policy
• Replacement/Integration policy
• Migration decision criterion

Island model for EAs
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Full distribution on GPU
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Threads Block

 One threads block represents 
one island

 Possible issues

 Sort the population of each island

 Find the minimum of the 
population of each island

 Threads synchronization 
(synchronous migration)

Generation of random numbers
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Migration on GPU
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Results for the Weierstrass function (2)
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Algorithm Parameters Limitation 
of the local 
population 

size

Limitation 
of the 

instance
size

Limitation 
of the total 
population 

size

Speed

CPU Heterogeneous Not limited Very Low Very Low Slow

CPU+GPU Heterogeneous Not limited Low Low Fast

GPU Homogeneous Size of a
threads 
block

Low Medium Very Fast

GPU 
Shared

Homogeneous Limited to 
shared 

memory

Limited to 
shared 

memory

Medium Lightning
Fast

Pros and cons
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 Perspectives

Define sophisticate island topologies

Multi-GPU approach for the island model for EAs

 Extension of the island model for estimation of distribution 
algorithm (EDA) and particle swarm optimization (PSO)
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