Parallel Local Search for Permutations

Atle Riise Collab workshop 12-13 April 2010

IKT

.

Motivaton

Motivation

- GPU (and similar) technologies are becoming increasingly accessible
- How can it be used in local search?

Case: Permutations, using the symmetric TSP as a test bench.

Local Search framework

IteratedLocalSearch Input: initial solution s

- 1. b = s
- 2. while (! stop)
 - a. s = VND(s)
 - b. Combine(s,b)
 - c. s = Accept(s, b)
 - d. s = Diversify(s)
- 3. Return b

VND

Input: initial solution s

- 1. *b* = s
- 2. moveOp = twoOpt
- 3. while (moveOp != NULL)
 - a. s' = Descent(s, moveOp)
 - b. moveOp = SelectMO(s, s')

IKT

- C. S=S'
- 4. return s

Restart of ILS to avoid stagnation

Combination of solutions at each restart

Move operators

Relocate, O(n2)

Two-opt, O(n2)

Parallel Evaluation of neighbours

- In sequential LS, most of the computation time (>90%) is used in neighbourhood evaluation
- Obvious idea: Let each GPU kernel evaluate one neighbour (using a mapping from thread id to move id)
- Some authors have already done this
 - LS: Luong et al., Janiak et al.
 - GA/GP: Yu et al., Zhongwen and Hongzhi, Harding et al., Langdon and Banzhaf.

Parallel Evaluation speed-up

GPU implementation

- GeForce GTX 280
- The best move is selected through reduction
- Tested on a few cases. Speedup factor > 70 for all cases.

Notes

- Single precision on the GPU
- Same search path, and both use delta evaluation
- Parallel evaluation does not change complexity
- So, it is still a point to reduce *large* neighbourhoods
- Complex evaluations may not be implementable in parallel
 - Fast approximate parallel evaluation as neighbourhood reduction

So, what more can we do?

- In sequential search, one often use a limited neighbourhood exploration, e.g.:
 - "First improvement"
 - NH-filtering (e.g. candidate lists). Typically using problem specific information.
- Our increased efficiency of NH evaluation reduces the need for such truncation
 - We can afford a more complete NH evaluation at each iteration

Combining independent moves

We know all (or many of) the improving moves

- Why only apply one (waste of computation effort)?
- However, cannot apply all based on the evaluation, since each evaluation assumes move independence.

Move independence and selection

- We have to select a set of moves whose evaluation is independent (objectives, constraints, "modeling constraints").
- Selecting a set of such independent moves from the set of all improving moves corresponds to the max. Weight stable set problem, which is NP-hard.
- Early in the search, we may have very many improving moves, and this complexity may be a problem.

Move independence and selection

Two ways to go:

- Congram et al. ("Dynasearch"), as well as Ergun et al:
 - Simplified dependency rules enables Dynamic Programming to select moves. Used in sequential search.
- Our way
 - Exact dependency definition
 - Heuristic selection
- Note that the logic of selecting a set of basis moves applies equally well to best improvement sequential search.
 - However, in general, the GPU evaluation speedup enables best improvement search, and thus application of a maximum set of independent moves.

Move selection implementation

- Select independent improving moves using cudpp's compacting function
- Difficult to do selection on GPU due to "links". May be possible...?
 - Not a great case for parallelisation, unless the number of improving moves is large. However, would save copying memory to host.
- We ended up copying all improving moves to host, and using a sequential heuristic selection mechanism
- Then, since we are already on the host, we apply the few selected move sequentially. Then move on to evaluate the next iteration's neighbours on the GPU...

Similarities with VLNS

- Applying a set of independent (simple/basic) moves corresponds to applying a "complex" move from a neighbourhood of "all possible combinations of independent basic moves".
- Such a neighbourhood is exponential in n, and a search with such neighbourhoods falls under the umbrella of Very Large Neighbourhood Search.
- However, we select our combined, complex, moves from a much smaller neighbourhood, based on only the *improving* basic moves.

Parallel search speed-up

- Different paths through search space; compare on cpu time

		Sequen	tial Sear	rch				
Case	Run %	Mean	Min	Max	Run %	Mean	Min	Max
d198	100 %	0.17316	0	0.546	100 %	0.558485	0.0468	1.263632
d493	100 %	34.48547	11.40367	71.88526	100 %	17.52043	5.850038	44.64749
d657	100 %	99.84438	45.6612	288.8808	100 %	50.46502	9.843663	150.0252
uy734	100 %	136.7368	72.4902	315.2604	100 %	33.11497	14.6016	68.99924
d1291	100 %	444.8726	119.4812	1052.788	100 %	63.43687	26.3266	118.3707
d1655	90 %	1083.724	363.1079	2208.149	100 %	144.1463	33.4776	478.764
d2103	100 %	724.8785	309.8024	1187.332	100 %	162.0577	8.6424	624.5869
nu3496	0 %	-	-	-	88 %	1586.162	608.0607	3537.784

Table 1: Mean time to reach a 1% deviation from the optimum value.

The ratio between mean computation times used to reach different deviations from the optimal value, between sequential and parallel search.

Local Search framework

IteratedLocalSearch Input: initial solution s

- 1. b = s
- 2. while (! stop)
 - a. s = VND(s)
 - b. Combine(s,b)
 - c. s = Accept(s, b)
 - d. s = Diversify(s)
- 3. Return b

VND

Input: initial solution s

- 1. *b* = s
- 2. moveOp = twoOpt
- 3. while (moveOp != NULL)
 - a. s' = Descent(s, moveOp)
 - b. moveOp = SelectMO(s, s')

IKT

- C. S=S'
- 4. return s

Restart of ILS to avoid stagnation

Combination of solutions at each restart

Effect of combination

Early on in the search, the effect of re-combination of local optima does not seem to be important. As can be seen from Table 4, however, as the search approaches the optimum the combination has a positive effect on mean run times for all but one case. **Table 4: The effect of combination of local optima, at 1% deviation from optimal values.**

	Without Combine					With Combine		
Case	Run %	Mean	Min	Max	Run %	Mean	Min	Max
d198	100%	0.941	0.031	2.075	100%	0.558	0.047	1.264
d493	100%	49.588	3.058	140.603	100%	17.520	5.850	44.647
d657	100%	75.073	24.274	160.274	100%	50.465	9.844	150.025
uy734	100%	69.932	18.205	155.111	100%	33.115	14.602	68.999
d1291	100%	69.371	21.512	195.562	100%	63.437	26.327	118.371
d1655	100%	366.812	61.604	828.656	100%	144.146	33.478	478.764
d2103	100%	100.414	9.376	467.782	100%	162.058	8.642	624.587
nu3496	100%	1 826.475	1 421.644	2 371.481	88%	1 586.162	608.061	3 537.784

References

- Luong, T.V., N. Melab, and E.-G. Talbi, *Parallel Local Search on GPU*, in 2009, DOLPHIN (INRIA Lille - Nord Europe).
- Janiak, A., W. Janiak, and M. Lichtenstein, *Tabu Search on GPU*. Journal of Universal Computer Science, 2008. 14(14): p. 2416-2427.
- Yu, Q., C. Chen, and Z. Pan, Parallel Genetic Algorithms on Programmable Graphics Hardware, in Advances in Natural Computation. 2005. p. 1051-1059.
- Zhongwen, L. and L. Hongzhi. Cellular Genetic Algorithms and Local Search for 3-SAT problem on Graphic Hardware. in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. 2006.
- Harding, S. and W. Banzhaf, Fast Genetic Programming on GPUs, in Genetic Programming. 2007. p. 90-101.
- Langdon, W. and W. Banzhaf, A SIMD Interpreter for Genetic Programming on GPU Graphics Cards, in Genetic Programming. 2008. p. 73-85.
- Congram, R.K., C.N. Potts, and S.L.v.d. Velde, An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem. INFORMS J. on Computing, 2002. 14(1): p. 52-67.
- Ergun, z., J.B. Orlin, and A. Steele-Feldman, Creating very large scale neighborhoods out of smaller ones by compounding moves. Journal of Heuristics, 2006. 12(1-2): p. 115-140.

