
IKT

Parallel Local Search for 
Permutations

Atle Riise
Collab workshop
12-13 April 2010



IKT

Motivaton

Motivation
GPU (and similar) technologies are becoming increasingly 
accessible
How can it be used in local search?

Case: Permutations, using the symmetric TSP as a test 
bench.
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Local Search framework
VND
Input: initial solution s
1. b = s
2. moveOp = twoOpt
3. while (moveOp != NULL)

a. s’ = Descent(s, moveOp)
b. moveOp = SelectMO(s, s’)
c. s=s’

4. return s

IteratedLocalSearch
Input: initial solution s
1. b = s
2. while (! stop)

a. s = VND(s)
b. Combine(s,b)
c. s = Accept(s, b)
d. s = Diversify(s)

3. Return b

IteratedLocalSearch
Input: initial solution s
1. b = s
2. while (! stop)

a. s = VND(s)
b. Combine(s,b)
c. s = Accept(s, b)
d. s = Diversify(s)

3. Return b

Restart of ILS to avoid stagnation
Combination of solutions at each restart
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Move operators
Relocate, O(n2)

Two-opt, O(n2)
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Parallel Evaluation of neighbours

In sequential LS, most of the computation time (>90%) is 
used in neighbourhood evaluation

Obvious idea: Let each GPU kernel evaluate one
neighbour (using a mapping from thread id to move id)

Some authors have already done this
LS: Luong et al., Janiak et al.
GA/GP: Yu et al., Zhongwen and Hongzhi,  Harding et al., 
Langdon and Banzhaf.
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Parallel Evaluation speed-up

GPU implementation
GeForce GTX 280
The best move is selected through reduction
Tested on a few cases. Speedup factor > 70 for all cases.

Notes
Single precision on the GPU
Same search path, and both use delta evaluation
Parallel evaluation does not change complexity
So, it is still a point to reduce large neighbourhoods
Complex evaluations may not be implementable in parallel

Fast approximate parallel evaluation as neighbourhood reduction
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So, what more can we do?

In sequential search, one often use a limited 
neighbourhood exploration, e.g.:

”First improvement”
NH-filtering (e.g. candidate lists). Typically using problem specific 
information.

Our increased efficiency of NH evaluation reduces the 
need for such truncation 

We can afford a more complete NH evaluation at each iteration
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Combining independent moves

We know all (or many of) the improving moves
Why only apply one (waste of computation effort)?

However, cannot apply all based on the evaluation, since 
each evaluation assumes move independence.
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Move independence and selection

We have to select a set of moves whose evaluation is 
independent (objectives, constraints, ”modeling 
constraints”).
Selecting a set of such independent moves from the set 
of all improving moves corresponds to the max. Weight 
stable set problem, which is NP-hard. 
Early in the search, we may have very many improving 
moves, and this complexity may be a problem.
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Move independence and selection
Two ways to go:

Congram et al. (”Dynasearch”), as well as Ergun et al:
Simplified dependency rules enables Dynamic Programming to select
moves.  Used in sequential search.

Our way
Exact dependency definition
Heuristic selection

Note that the logic of selecting a set of basis moves
applies equally well to best improvement sequential
search.

However, in general, the GPU evaluation speedup enables best 
improvement search, and thus application of a maximum set of
independent moves.
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Move selection implementation

Select independent improving moves using cudpp’s
compacting function
Difficult to do selection on GPU due to ”links”. May be 
possible…?

Not a great case for parallelisation, unless the number of 
improving moves is large. However, would save copying memory 
to host.

We ended up copying all improving moves to host, and 
using a sequential heuristic selection mechanism
Then, since we are already on the host, we apply the few 
selected move sequentially. Then move on to evaluate the 
next iteration’s neighbours on the GPU…
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Similarities with VLNS

Applying a set of independent (simple/basic) moves
corresponds to applying a ”complex” move from a 
neighbourhood of ”all possible combinations of 
independent basic moves”. 

Such a neighbourhood is exponential in n, and a search
with such neighbourhoods falls under the umbrella of Very
Large Neighbourhood Search.

However, we select our combined, complex, moves from a 
much smaller neighbourhood, based on only the
improving basic moves.
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Parallel search speed-up

Table 1: Mean time to reach a 1% deviation from the optimum value.

- Different paths through search space; 
compare on cpu time
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Example
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The ratio between mean computation times used to reach different deviations
from the optimal value, between sequential and parallel search.
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Local Search framework
VND
Input: initial solution s
1. b = s
2. moveOp = twoOpt
3. while (moveOp != NULL)

a. s’ = Descent(s, moveOp)
b. moveOp = SelectMO(s, s’)
c. s=s’

4. return s

IteratedLocalSearch
Input: initial solution s
1. b = s
2. while (! stop)

a. s = VND(s)
b. Combine(s,b)
c. s = Accept(s, b)
d. s = Diversify(s)

3. Return b

Restart of ILS to avoid stagnation
Combination of solutions at each restart
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Effect of combination
Early on in the search, the effect of re-combination of local optima does not seem to be important. As can be seen from Table 4,
however, as the search approaches the optimum the combination has a positive effect on mean run times for all but one case.
Table 4: The effect of combination of local optima, at 1% deviation from optimal values.
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