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Motivaton

B Motivation

m GPU (and similar) technologies are becoming increasingly
accessible

®m How can it be used In local search?

W Case: Permutations, using the symmetric TSP as a test
bench.
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Local Search framework

lteratedLocalSearch VND
Input: initial solution s Input: initial solution s
L. b=s % b:So twoOpt
S . moveOp = twoOp
2. while (_ f’/tﬁg) 3. while (moveOp != NULL)
a. 5= VR () a. s'= Descent(s, moveOp)
b. Combine(s,b) b. moveOp = SelectMO(s, s’)
c. s = Accept(s, b) C. S=S’
d. s = Diversify(s) 4. returns
3. Returnb

B Restart of ILS to avoid stagnation
B Combination of solutions at each restart
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Move operators

¥ Relocate, O(n2)
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Parallel Evaluation of neighbours

¥ In sequential LS, most of the computation time (>90%) is
used in neighbourhood evaluation

B Obvious idea: Let each GPU kernel evaluate one
neighbour (using a mapping from thread id to move id)

B Some authors have already done this
m LS: Luong et al., Janiak et al.

m GA/GP: Yu et al.,, Zhongwen and Hongzhi, Harding et al.,
Langdon and Banzhaf.
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Parallel Evaluation speed-up

® GPU implementation
m GeForce GTX 280
B The best move is selected through reduction
B Tested on a few cases. Speedup factor > 70 for all cases.

B Notes

m Single precision on the GPU

B Same search path, and both use delta evaluation

m Parallel evaluation does not change complexity

m So, it is still a point to reduce large neighbourhoods
N

Complex evaluations may not be implementable in parallel
m Fast approximate parallel evaluation as neighbourhood reduction
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So, what more can we do?

¥ [n sequential search, one often use a limited
neighbourhood exploration, e.g.:
m "First improvement”

m NH-filtering (e.g. candidate lists). Typically using problem specific
iInformation.

® Our increased efficiency of NH evaluation reduces the
need for such truncation
m We can afford a more complete NH evaluation at each iteration

SINTEF



Combining independent moves

® We know all (or many of) the improving moves
m Why only apply one (waste of computation effort)?

® However, cannot apply all based on the evaluation, since
each evaluation assumes move independence.

A e
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Move independence and selection

® We have to select a set of moves whose evaluation is
Independent (objectives, constraints, "modeling
constraints”).

B Selecting a set of such independent moves from the set
of all iImproving moves corresponds to the max. Weight
stable set problem, which is NP-hard.

® Early in the search, we may have very many improving
moves, and this complexity may be a problem.
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Move independence and selection

® Two ways to go:

m Congram et al. ("Dynasearch”), as well as Ergun et al:

m Simplified dependency rules enables Dynamic Programming to select
moves. Used in sequential search.

m Our way
m Exact dependency definition
m Heuristic selection

® Note that the logic of selecting a set of basis moves
applies equally well to best improvement sequential

search.

m However, in general, the GPU evaluation speedup enables best
iImprovement search, and thus application of a maximum set of
independent moves.
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Move selection implementation

W Select independent improving moves using cudpp’s
compacting function

® Difficult to do selection on GPU due to "links”. May be
possible...?

B Not a great case for parallelisation, unless the number of
Improving moves is large. However, would save copying memory
to host.

® We ended up copying all improving moves to host, and

using a sequential heuristic selection mechanism

® Then, since we are already on the host, we apply the few
selected move sequentially. Then move on to evaluate the
next iteration’s neighbours on the GPU...
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Similarities with VLNS

B Applying a set of independent (simple/basic) moves
corresponds to applying a "complex” move from a
neighbourhood of "all possible combinations of
Independent basic moves”.

® Such a neighbourhood is exponential in n, and a search
with such neighbourhoods falls under the umbrella of Very
Large Neighbourhood Search.

® However, we select our combined, complex, moves from a
much smaller neighbourhood, based on only the
Improving basic moves.
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Parallel search speed-up

- Different paths through search space;

compare on cpu time

Sequential Search

Mean
0.17316
34.48547
99 84438
136.7368
444 8726
1083.724
724 8785

Case Run %
d198 100 %
d493 100 %
de65s7 100 %
uy734 100 %
d1291 100 %
d1655 90 %
d2103 100 %
nu3496 0% -

Min
0
11.40367
45.6612
72.4902
119.4812
363.1079
309.8024

Max Run %
0.546 100 %
71.88526 100 %
288.8808 100 %
315.2604 100 %
1052.788 100 %
2208.149 100 %
1187.332 100 %
- 88 %

Parallel Search

Mean

0.558485
17.52043
90.46502
33.11497
63.43687
1441463
162.0577
1586.162

Min
0.0468
5.850038
9.843663
14.6016
26.3266
33.4776
8.6424
608.0607

Max
1.263632
44 64749
150.0252
68.99924
118.3707

478.764

624.5869

3537.784

Table 1: Mean time to reach a 1% deviation from the optimum value.
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Example

QRTD for d657, at 0.5% deviation from optimum.
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Parallel search speed-up as a function of n

Sequentialtime/parallel time
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The ratio between mean computation times used to reach different deviations
from the optimal value, between sequential and parallel search.

SINTEF




Local Search framework

lteratedLocalSearch VND
Input: initial solution s Input: initial solution s
1.b=s > moveOp = twoOp!
o . moveOp = twoOp
2. while S \S/tﬁg) 3. while (moveOp != NULL)
a. 5= VRh (s) a. s’ = Descent(s, moveOp)
b. Combine(s,b) b. moveOp = SelectMO(s, s")
c. s = Accept(s, b) C. S=S’
d. s = Diversify(s) 4. returns
3. Returnb

B Restart of ILS to avoid stagnation
m Combination of solutions at each restart
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Effect of combination

Early on in the search, the effect of re-combination of local optima does not seem to be important. As can be seen from Table 4,
however, as the search approaches the optimum the combination has a positive effect on mean run times for all but one case.
Table 4: The effect of combination of local optima, at 1% deviation from optimal values.

Case Run %

d198
d493
d657
uy/34
d12H
d1655
d2103
nu3496

100%
100%
100%
100%
100%
100%
100%
100%

Without Combine

Mean Min
0.941 0.031
49588 3.058
75073 24 274
69.932 18.205
69.371 21.512
366.812 61.604
100414 9376
1826475 1421.644

Max
2.075
140.603
160.274
155.111
195.562
828.656
467.782
2 371.481

Run %
100%
100%
100%
100%
100%
100%
100%

88%

With Combine
Mean Min Max
0.558 0.047 1.264
17.520 5.850 44 647
50.465 9844 150.025
33115  14.602 68.999
63437 26.327 118.371
144146 33.478 478.764
162.058 8642 624.587
1586.162 608.061 3 537.784
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