
ICT

Parallelization of Spider Planner

Morten Smedsrud, SINTEF ICT

1



ICT 2

SPIDER - A Generic VRP Solver

Designed to be widely applicable
Based on generic, rich model
Predictive route planning
Plan repair, reactive planning
Dynamic planning with stochastic model

Framework for VRP research



ICT 3

SPIDER - Generalisations of CVRP
Heterogeneous fleet

Capacities
Equipment
Arbitrary tour start/end locations
Time windows
Cost structure

Linked tours with precedences
Mixture of order types
Multiple time windows, soft time windows
Capacity in multiple dimensions, soft capacity
Alternative locations, tours and orders
Arc locations, for arc routing and aggregation of node orders
Alternative time periods
Non-Euclidean, asymmetric, dynamic travel times
Compatibility constraints
A variety of constraint types and cost components

driving time restrictions
visual beauty of routing plan, non-overlapping 



ICT

PC Microprocessor development

Year Processor Clock Frequency Max Power Cores(Threads)
1978 8086 / 8088 5-8MHz 1
1982 80286 6-25MHz 1
1985 80386 12-40MHz 1
1989 80486 16-100MHz 1
1993 Pentium 60-233MHz 17W 1
1995 Pentium Pro 150-200MHz 35W 1
1997 Pentium 2 233-450Mhz 27W 1
1999 Pentium III 450-1400MHz 32W 1

2000-2008 Pentium IV 1.3-3.8GHz 115W 1(2)
2005- Athlon X2 1-3.2GHz 125W 2
2006- Intel Core 2 1.06-3.33GHz 130W 2(4)
2008- Intel Core i7 1.6-3.33GHz 130W 4-6(8-12)

4



ICT

The shared memory model on PCs

All data available to all CPU cores in the same address
space
Bandwith is shared and CPU cores must maintain cache
coherency
Potentional race conditions
Software tools: events, wait functions and critical sections.
Deadlocks
Hardware tool: Atomic operations

5



ICT

SPIDER characteristics

Original design back in 1996-1998
Written in C++, heavy use of STL and smart pointers for 
memory management
Based on iterated local search
5 different initial constructors
15 different types of operators / neighbourhoods
14 objective / 8 constraint types
More than 300k lines of code
Profiling showed majority of the runtime spend on
evaluating neighbours

6



ICT

Move / neighbourhood architecture

Neighbourhoods present moves sequentially
Neighbourhood can be set up to filter away many
obviously infeasible moves (default on)
Moves present the changes they represent to constraints
and objectives by applying the changes (and undoing
them)
Moves also report what parts of the solution they change

7



ICT

Parallel implementation
1 Master / multiple slave threads
To avoid race conditions each thread maintains and works
on its own copy of the solution
Each thread takes turns on getting moves to evaluate from 
the sequential neighbourhood (through critical section)
Each move gets a serial number from its neighbourhood, 
to get deterministic behavior
Make code thread safe by the use of critical sections
Using atomic operations on smart pointers to remove the
overhead of critical sections
Some previously static allocated arrays allocated
dynamically to make functions reentrant

8



ICT

Relocate results

9



ICT

2 opt results

10



ICT

Or exchange results

11



ICT

Insert results

12



ICT

Possible explanation

Sequential neighbourhood generation taking too much
time
Too many critical sections somewhere
Slowed by reallocation of prevous statically allocated
arrays

13



ICT

Possible improvements

Redo the neighbourhood generation, generate smaller independent 
sub neighbourhoods that can be evaluated and filtered in parallel
Reimplementing thread safe version of some code optimizations that
was removed because it was not thread safe
Change the way moves present changes, without applying them. 
Would reduce the need to maintain copy of solution data for each
thread.
If neighbourhood size can be estimated in advance, use sequential
evaluation on small neighbourhoods
Re implement cache arrays to be statically allocated, 1 per thread

14



ICT

Preliminary Conclusions?

Non deterministic execution can make debugging shared
memory applications difficult.
Converting old sequential code to thread safe code turned
out to be a lot more costly than expected.
Problem cases probably need to be of a certain size
before parallel evaluation makes sense.
Care must be taken to avoid unecessary thread
synchronisation as it can be costly.
This implementation needs more tuning and testing. 
Currently does not appear to scale past 2 threads.

15


	Parallelization of Spider Planner
	SPIDER - A Generic VRP Solver
	SPIDER - Generalisations of CVRP
	PC Microprocessor development
	The shared memory model on PCs
	SPIDER characteristics
	Move / neighbourhood architecture
	Parallel implementation
	Relocate results
	2 opt results
	Or exchange results
	Insert results
	Possible explanation
	Possible improvements
	Preliminary Conclusions?

