An Integrative Cooperative Search approach for rich vehicle routing problems

Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, Walter Rei, Thibaut Vidal

Chaire de recherche industrielle du **CRSNG** en management logistique

NSERC Industrial Research Chair in Logistics Management

ESG UQAM École des sciences de la gestion Université du Québec à Montréal

Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport

1st Collab Workshop, Holmen fjordjotell, 2010.04.11-13.

Plan

- Goals, objectives, inspiration / fundamental ideas
- The Integrative Cooperative Search approach
- Rich VRP
- (*) Illustration: ICS for MDPVRP
- Perspectives

Rich Problem Setting

S Large number of interacting attributes (characteristics)
 ★ Larger than in "classical" ("academic") settings
 ★ Problem characterization
 ★ Objectives
 ★ Uncertainty

S That one desires to (must [☉]) address simultaneously

Design of Wireless Networks

Simultaneously determine the

- ★ Appropriate number of base stations
- ★ Location
- ★ Height & power
- ★ Number of antennas/station
- ★ Tilt & orientation of each antenna
- ★ Optimize cost, coverage & exposure to electrosmog

Rich VRP

- S Vehicle routing in practice
- Attributes of several generic problems
 - Time windows
 - SVehicle capacities
 - SRoute duration & length
 - Topology of routes
 - S Multi-compartment
 - SMulti-depot
 - Multiple periods

- Pick up at (small but numerous) suppliers
- S Deliveries at (few) plants (very different in capacity)
- Mixing pickups and deliveries (sometimes)
- S Multiple tours
- S Complex "cost" functions

S Plan now by firm, execute repetitively later by carriers

What Methodology for Rich Problems?

- Simplify (!!)
- Series of simpler problems
- Simultaneous handling of multiple attributes
- A more complex problem to address!
- Propose a "new" approach

Sources of Inspiration

Decomposition

- ★ Major methodological tool in optimization
- ★ Domain decomposition in parallel computation
- ★ Solution reconstruction? "Partition" modification?

Simplification

★ Fixing part of a rich problem may yield an easier case to address

Cooperative (parallel) multi-search meta-heuristics successful in harnessing the power of different algorithms (guidance mechanisms)

Indirect, Memory-based Cooperation

© Teodor Gabriel Crainic 2010

ICS Fundamental Ideas & Concepts

- Decomposition by attribute
- Concurrent population evolution
- Solver specialization
- S Cooperation with self-adjusting and guidance features

Shared-Memory ICS

Decomposition by Attribute

- Simpler settings by fixing (ignoring) variables or constraints
 - ★ "Eliminating" variables or constraints might yield the same sub-problems but impair the reconstruction of solutions
- S Yields
 - ★ Well-addressed, "classical" variants with state-of-theart algorithms
 - ★ Formulations amenable to efficient algorithmic developments
 - ★ Our idea: be opportunistic!

Decomposition by Attribute (2)

S Each subproblem = Particular fixed attribute set
 ★ Addressed using effective specialized methods
 → Partial Solvers

♥ Partial Solvers focus on the unfixed attributes
 → Partial Solutions

Multiple search threads

- \star One or several methods for each subproblem
- ★ Meta-heuristic or exact
- Central-memory cooperation

Decomposition by Attribute (3)

Issues and challenges

★ Homogeneous vs. heterogeneous population

- ★ Purposeful evolution of partial solutions
- ★ Reconstruction & improvement of complete solutions

Reconstructing Complete Solutions

- Recombining Partial Solutions to yield complete ones
- S Integrator search threads/operators: Partials → Complete
 ★ Select and forward
 - ★ Population-based methods: GA & Path Relinking
 - ★ Mathematical programming-based models
- Sissues and challenges: Selection of
 - ★ Partial solutions for combination
 - ★ Complete solutions for the central-memory population
 - Which subproblems?
 - What quality? What diversity?

Improving Complete Solutions

- Search threads Solvers (to come)
- S Evolve & improve complete solution population
- These are difficult problems!
 - ★ If they were "easy", we would not need ICS!
- Should modify solutions differently from partial solvers
 ★ Post-optimization
 - ★ Large neighbourhoods for "few" iterations
 - \star Select few solutions and solve an exact problem
 - \star Local branching on variables from different attribute

sets

Global Search Coordinator

- A "richer" role: purposeful evolution
- ★ Reconstruct / approximate global status of the search
 ★ Avoid "heavy-handed" process control: cooperation
 ★ Information exchange mechanisms
 ★ Guidance for Partial Solvers & global search
 S Monitor
 - ★ Pools / populations
 - Complete solutions (direct)
 - Partial solutions (& integrators) (direct or indirect)

★ Exchanges / communications (possibly)

Chaire de recherche industrielle du **CRSNG** en management logistique **NSERC** Industrial Research Chair in Logistics Management

© Teodor Gabriel Crainic 2010

Global Search Coordinator – Monitoring

- Classical (central) memory statistics
- S A "richer" memory through analysis of solutions & communications
 - ★ Quality of solution & evolution of population
 - ★ Impact on population (quality & diversity)
 - ★ Presence of solutions or solution elements in various types/classes of solutions
 - Arcs, paths, ...
 - Good, average, poor solutions
 - Solutions with particular attribute sets, ...

Chaire de recherche industrielle du **CRSNG** en management logistique **NSERC** Industrial Research Chair in Logistics Management

Global Search Coordinator – Monitoring (2)

- The process Partial Solver, Integrator, Solver that produced the solution
- Search space covering
 - ★ Attribute values (combinations of) corresponding to visited search space regions (how often, quality measures)

•

Global Search Coordinator – Guidance

- S Partial Solvers cooperate and communicate according to their own internal logic
- S Based on monitoring results, "instructions" (solutions, often) are sent GSC \rightarrow Partial Solver (pool) or Integrator
 - ★ Enrich quality or diversity
 - ★ Modify the values of the fixed attributes ⇔ Moving the search to a different region
 - \star Modify the sets of attributes defining the partition
 - ★ Modify parameter values or method or replace method

ICS Concurrent Evolution

Zoom on Partial Solver Organization

NSERC Industrial Research Chair in Logistics Management

21

CIRRELT

MDPVRP and MDPVRPTW

- S Multiple depots
- ★ Given number of homogeneous vehicles at each depot
 S Periodic problem
 - ★ Planning horizon of *t* "days" (periods)
 - ★ For each customer: a list of acceptable visit day "patterns"
- S Each customer must be assigned to a single depot and a single pattern and routes must be constructed for each depot & day, in such a way that the total cost of all the resulting routes is minimized

An Important Property \rightarrow **Decomposition**

- S Any MDVRP(TW) or MDPVRP(TW) instance can be transformed into a (larger ...) PVRP(TW) instance
- One can use the same solution procedure to solve the 3 problems
- S Natural decomposition of the MDPVRP(TW) into two subproblems:
 - \star PVRP(TW) \rightarrow Fix depot assignments
 - \star MDVRP(TW) \rightarrow Fix pattern assignments
- S We can use the same solvers as Partial Solvers for the two subproblems and as Global Solver

Current Solvers

- A neighbourhood-based search based on the Unified Tabu Search (UTS) procedure of Cordeau et al. (2001)
- A new hybrid population-based solver
- ★ Giant tour with no delimiters representation + split algorithm (Prins 2002) + pattern chromosome
- ★ Admits infeasible solutions with respect to capacity and route length constraint violations, with self-adjusting penalties (UTS)
- ★ Offspring education: local search (route, patterns)
- ★ Population management; in parent selection as well

© Teodor Gabriel Crainic 2010

An Evolutionary ICS MDPVRP Illustration

- S-population scheme
 - ★ P0: "Global" population
 - ★ P1: Fixed patterns
 - ★ P2: Fixed depots
- S 3 solvers for each population: 2 GA, 1 UTS
- GA as Integrator
- GA as Partial Solver: education does not change the patterns corresponding to the "fixed" attributes

ICS MDPVRP Illustration – Integrators

S 2 Integrators: Random select in 25% best

- ★ 2 parents → extract depot and period patterns → generate population → evolve → send best valid
- ★ 100 couples: crossover + educate & repair → send best (valid)

ICS MDPVRP Illustration – Guidance

- Information collection on (customer/depot/pattern)
 ★ No. occurrences
 - ★ Frequencies in best/average/bad sub-populations
 - ★ Best fitness and average rank, ...
 - Suild good "guiding" individuals, with *promising* attributes in relation with previous measures
 - Guiding migration on partial population stalling
 - ★ Send guiding individuals + a good complete solution + some random ones

Preliminary Results

Gaps with respect to the best known solutions

GA		P-GA	ICS with Guidance		
1h00	3h00	3 x 1h00	5 min	15 min	30 min
0,65%	0,44%	0,33%	0,58%	0,34%	0,26%
		ICS without Guidance			
			5 min	15 min	30 min
			0,66%	0,41%	0,30%

- Guidance improved average results
- S 5 min of ICS competitive with 1h of sequential solving

Conclusions & Perspectives

- Sich (combinatorial optimization) problems present interesting challenges and opportunities
- Parallel cooperation performs very well
- ICS appears promising when complexity grows
- Still a lot of work on all aspects of the approach and applications

