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Hardware Evolution
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Moore’s Law

“The number of transistors 
on an integrated circuit for 
minimum component cost 
doubles every 24 months” 
– Gordon Moore. 
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Brief history of computing: 1970-2004

1971 (4004)
2300 transistors
1 x 0.000740 GHz
2004 (Pentium 4 Prescott)
125 000 000 transistors
1 x 4 GHz
2008 (Core i7 Quad)
731 000 000 transisitors
4 x 3.33 GHz
2010+ (Itanium Tukwila/Poulson)
2 000 000 000+ transistors
8 x 2 GHz?

5



ICT

What happened in 2004?

Pentium 4 original target 
frequency: 10 GHz

Increasing the frequency has 
several implications (three 
walls):

Memory
Instruction Level Parallelism
Power
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Memory Wall

Memory speeds have not increased as fast as core 
frequencies

A processor can wait through hundreds of clock cycles if it has to 
get data or instructions from main memory

Larger caches combined with instruction level parallelism 
can reduce the memory-wait time
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Instruction Level Parallelism Wall

Difficulty to find enough parallelism in the instructions 
stream of a single process to keep higher performance 
processor cores busy.

ILP:
Instruction pipelining (execution of multiple instructions can be 
partially overlapped)
Superscalar (parallel instruction pipelines)
Branch prediction (predict outcome of decisions)
Out-of-order execution
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Power Consumption Wall

When the frequency increases, the power consumption increases 
disproportionately

Power density relative to cube of frequency.
Frequency limited to around 4 GHz

32
dddd VVfCP ≈⋅⋅⋅= ρ

P is the power density in watts per unit area, C is the
total capacitance, ρ is the transistor density, f is the processor
frequency, and Vdd is the supply voltage.
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How can multi-core help?

Two cores running at 85% frequency vs. one core at 100% frequency:
100% power consumption
170% performance
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Why not 100-core Pentium IV?

Deep pipelines,
heavy ILP use, and
huge caches drain a lot of power.

CPUs have low CPI (cycles per instruction), but high “WPI” (Watts per 
Instruction)
Accelerator cores have shallow pipelines, low or no ILP, and small or 
no caches!
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About 50% of the cost of a
supercomputer is the electricity bill!
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Accelerator cores

Modern accelerators are power efficient!
Intel Teraflops research chip (AKA Polaris, 80-
core): 1 teraflops using 97 watt (Mattson 2008)
Core i7 Quad offers 100 gigaflops for 130 watt...
GPUs, FPGAs, and the Cell BE are examples of 
commodity accelerators
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Heterogeneous Computer

A heterogeneous computer is a tightly coupled system of processing 
units with distinct characteristics. 
A modern desktop or laptop computer is an example of such a 
system, as most systems include both a task-parallel, multi-core CPU 
and one or more data-parallel processors in the form of programmable 
graphics processing units(GPUs).

CPU (Intel Nehalem) GPU (NVIDIA GeForce 280)
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Parallel Computing
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Task vs. Data Parallelization

Task parallelization:

Each processor executes 
a different thread (or 
process) on the same or 
different data.

CPUs

Data parallelization:

Each processor performs 
the same task on different 
pieces of distributed data

GPUs
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Shared Memory vs. Distributed Memory

Multiple processors can operate 
independently but share the 
same memory resources
OpenMP

Distributed memory systems 
require a communication 
network to connect inter-
processor memory
MPI
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Shared memory system Distributed memory system
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Graphics Processing Units
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Graphics Processing Unit (GPU)

Background: Game industry
Massive parallel architecture (>500 cores per 
chip)
Typically 10-50 times speedup compared to 
CPU applications
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NVIDIA Fermi GPU

3 billion transistors

512 cores

Up to 1 Terabyte of GPU 
memory

1.5 Teraflops performance

40 nm manufacturing process
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NVIDIA GTX 480
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NVIDIA Fermi Architecture
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16 streaming multiprocessors are positioned around a common L2 cache. 
Each SM is a vertical rectangular strip that contain an orange portion (scheduler and dispatch), a green 
portion (execution units), and light blue portions (register file and L1 cache).
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Fermi Architecture – Streaming Multiprocessor 

32 cores per SM

64 KB of RAM for shared 
memory and L1 cache

Double precision speed at 50% 
of peak single precision

New IEEE 754-2008 floating 
point standard, surpassing even 
the most advanced CPUs.

Newly designed integer ALU 
optimized for 64-bit and 
extended precision operations. 
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Cached Memory Hierarchy

First GPU to support a true cache hierarchy in 
combination with on-chip shared memory

L1 cache per SM (32 cores)

Unified L2 cache (768KB)
Fast, coherent data sharing across all cores. 
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Hardware Thread Scheduler

Concurrent kernel execution and faster contex switch
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Full ECC Support

First GPU architecture to support ECC

Detects and corrects errors before system is affected

Protects register files, shared memories, L1 and L2 cache, 
and DRAM
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Enhanced Software Support

Full C++ support
Virtual functions
Try / catch hardware support

System call support
printf() etc.
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Programming Frameworks

Compute Unified Device Architecture (CUDA)
Developed by NVIDIA
Only available from NVIDIA GeForce 8 series and above

Open Computing Language (OpenCL)
Specified by the Khronos group
Cross platform

DirectCompute
Part of Microsoft DirectX
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NVIDIA Parallel Nsight

Debug, profile, and 
analyze GPU code

Integrated with Microsoft 
Visual Studio 2008

Will support CUDA C, 
OpenCL, DirectCompute, 
Direct3D, and OpenGL.
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Application Showcase (SINTEF)
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Seismic/ reservoir processing Ultrasound processing Matlab interface for GPUs

SimulationsIsosurface visualization
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Algorithm Design
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The key to performance is to understand the architecture and 
algorithm interaction.

Architecture and Algorithm Interaction
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”Multicore computers shift the burden of software performance from 
chip designers and processor architects to software developers” 

(J. Larus in Spending Moore’s Dividend, CACM May 2009)
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Computations: Algorithms and hardware 
advances doubles the speedup
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Image courtesy of David E. Keyes, Columbia University, USA. 
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Solving linear systems of equations:
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An Idealized Heterogeneous Computer
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Consequences for Computational 
Algorithms

The vast computational resources available make it crucial 
to design algorithms that are parallel from the ground up.

Different sequential tasks are issued to the task-parallel 
processors

Inheritably parallel tasks are executed on the data-parallel 
processors.
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NUMA memory layout of HCs

The growth in processor performance seems to outpace 
the growth of memory bandwidth

The data-flow must be organized so that processors 
access data that is close to it.

Identify and minimize the dependency between data

Use extra computations to avoid data synchronization
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Precision

Double-precision numbers requires twice the bandwidth

Double-precision numbers compute at half the speed of 
single-precision

Mixed-precision algorithms will play a key role.



ICT 36

What about existing code?

Numerical software can often gain dramatic increases in performance 
by refactoring just a few selected parts

for(…){
for(…){

computationalKernel();

}
}

Such approaches will most likely reach the limits of Amdahl’s law: The 
theoretical maximum speedup is limited by the relative time needed 
for the non-parallel part of the algorithm.



ICT

GPU-based Cloud Computing
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Cloud Computing Characteristics

Customers do not own the infrastructure

Consumers pay for only what resources they use

Dynamic hardware scalability

Device and location independent
Only need an internet connection 
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Cloud of Heterogeneous Computers
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Web‐based 
clients

Workstations

Heterogeneous 
computers 

(CPUs &GPUs)
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Web-Based Clients
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Web-Based Clients
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• Processing in the cloud
• Streaming of results to the clients
• User input from the client to the cloud.
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Web-Based Clients
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• Processing in the cloud
• Streaming of results to the clients
• User input from the client to the cloud.
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Example: Code Framework – SPHintef
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SPHintef

OpenMP GPU

Single CPU Parallel

Call the same functions
that implement the physics

GPU – Graphics 
Processing Unit

Cloud computing

Cloud

Visualization of results:
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Research Challenges: Auto-Tuning in the Cloud

Future clouds will be based on heterogeneous 
architectures.

New auto-tuning algorithms must be developed
Traditional auto-tuning techniques do not map to new heterogeneous 
architectures.

Very few generic libraries developed
BLAS, FFT

Multipe levels of parallelism:
Distributed memory, shared memory
MPI, OpenMP, threads, CUDA, etc. 
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Thanks!

Questions?
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